Approximation via Cost Sharing: Simpler and Better
Approximation Algorithms for Network Design*

Anupam Gupta’ Amit Kumar* Martin P4l ¥ Tim Roughgarden¥
November 30, 2005

Abstract

We present constant-factor approximation algorithms for several widely-studied
NP-hard optimization problems in network design, including the multicommodity rent-
or-buy, virtual private network design, and single-sink buy-at-bulk problems. Our algo-
rithms are simple and their approximation ratios improve over those previously known,
in some cases by orders of magnitude.

We develop a general analysis framework to bound the approximation ratios of our
algorithms. This framework is based on a novel connection between random sampling
and game-theoretic cost sharing. While techniques from approximation algorithms
have recently yielded new progress on cost-sharing problems, our work is the first to
show the converse—that ideas from cost sharing can be fruitfully applied in the design
and analysis of approximation algorithms.

*Preliminary versions of these results appeared in the Proceedings of the 35th Annual Symposium on
Theory of Computing, June 2003; the Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, October 2003; and the Proceedings of the 32nd Annual International Colloquium on
Automata, Languages, and Programming, July 2005.

"Department of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213. Part of this re-
search was done when the author was at Lucent Bell Laboratories, Murray Hill, NJ. This research is also
supported in part by NSF CAREER award CCF-0448095 and by an Alfred P. Sloan Fellowship. Email:
anupamg@cs.cmu. edu.

!Department of Computer Science and Engineering, IIT Delhi, India 110016. Part of this research was
done while the author was at Cornell University and Lucent Bell Laboratories, Murray Hill, NJ. Email:
amitk@cse.iitd.ernet.in.

§Google, Inc., 1440 Broadway, New York, NY. Part of this research was done while the author was at
Cornell University and supported by ONR grant N00014-98-1-0589. Email: mpal@acm.org.

YDepartment of Computer Science, Stanford University, 462 Gates Building, Stanford CA 94305. Sup-
ported in part by ONR grant N00014-04-1-0725, DARPA grant W911NF-04-9-0001, and an NSF CA-
REER Award. Part of this research was done while the author was at Cornell University. Email:
tim@cs.stanford.edu.

www.manaraa.com

1 Introduction

We present constant-factor approximation algorithms for several widely-studied NP-hard
optimization problems in network design. Our algorithms are extremely simple and have
the following flavor: randomly sample a simpler subproblem, solve the subproblem with an
existing algorithm, and greedily extend the subproblem solution to a solution feasible for
the original problem. The approximation ratios of our algorithms improve over all of those
previously known, in some cases by orders of magnitude.

We develop a general analysis framework to bound the approximation ratios of our al-
gorithms. This framework is based on a novel connection between random sampling and
cost sharing, the task of allocating the cost of an object to many users of the object in a
“fair” manner. Specifically, we define the notion of strict cost shares, and show that such
cost shares provide a powerful tool for analyzing the performance of a class of random sam-
pling algorithms. While techniques from approximation algorithms have recently yielded
new progress on cost sharing problems, our work is the first to show the converse that
ideas from cost sharing can be fruitfully applied in the design and analysis of approximation
algorithmes.

1.1 Four Network Design Problems

To describe our results more concretely, we define the three primary network design problems
that we consider in this paper. We discuss the motivation for and prior work on these
problems in Subsection 1.3 below.

Problem 1.1 (Multicommodity Rent-or-Buy) An instance of the multicommodity rent-
or-buy (MRoB) problem is defined by an undirected graph G = (V, E) and a set D =
{(si, t;)}e_, of vertex pairs called demand pairs, where each edge e € E has a nonnegative
cost ¢, and each demand pair (s;,?;) has a nonnegative weight w;. The goal is to compute
a minimum-cost way of installing sufficient capacity on the edges E so that w; units of flow
can be sent simultaneously from each source s; to the corresponding sink t;. The cost of
installing capacity on an edge is given by a simple concave function: capacity can be rented,
with cost incurred on a per-unit of capacity basis, or bought, which allows unlimited use after
payment of a large fixed cost. Precisely, there are positive parameters y and M, with the
cost of renting capacity equal to p times the capacity required (per unit length), and the
cost of buying infinite capacity equal to M (per unit length). By scaling, we can assume
that = 1 without loss of generality. We denote an MRoB instance by a tuple (G, D, w, M),
leaving the cost vector ¢ implicit.

We will also study the special case of single-sink rent-or-buy (SSRoB), where all demand pairs
(s;,t;) share a common sink vertex ¢, and the more general multicast rent-or-buy problem
(MuRoB), where there are arbitrary demand groups instead of demand pairs.

Problem 1.2 (Virtual Private Network Design) In an instance of virtual private net-
work design (VPND), we are again given an undirected graph G' with nonnegative edge costs
c. There is also a set D of demands, each of which is located at a vertex of G. Each demand

www.manaraa.com

J € D possesses two nonnegative thresholds by, (j) and b,y (j). These thresholds specify the
maximum amount of traffic that demand j will receive from and send to other demands,
respectively. A D x D matrix describing the amount of (directed) traffic between each pair
of demands is wvalid if it respects all thresholds. A feasible solution to an instance of VPND
is specified by a path P;; for each (ordered) demand pair (4, j) and by a capacity u, for each
edge e, such that there is sufficient capacity to route every valid traffic matrix via the paths
{P;;}. The objective is to find a feasible solution minimizing the cost), c.u.. We denote
an instance of VPND by the triple (G, D, b).

Problem 1.3 (Single-Sink Buy-at-Bulk) The single-sink buy-at-bulk network design (SS-
BaB) problem is a generalization of the SSRoB problem. The input is the same as in the
latter problem, except that instead of a single parameter M describing the cost of buying,
there are K types of cables. A cable of type i has a given capacity u; and a given cost (per
unit length) ;. As in the SSRoB problem, the goal is to compute a minimum-cost way of
installing sufficient capacity on the edges so that a prescribed amount of flow w; can be sent
simultaneously from each source s; to the common sink ¢.

The following simpler network design problem arises frequently as a subroutine in our
algorithmes.

Problem 1.4 (Steiner Forest) An instance of the Steiner Forest problem is given by an
undirected graph G with nonnegative edge costs ¢ and a set D = {(s;,%;)}¥_, of demand
pairs. The goal is to compute a minimum-cost subgraph of G that contains an s;-¢; path for
every i € {1,2,...,k}. We denote such a Steiner Forest instance by (G, D).

The Steiner Forest problem is equivalent to the special case of the MRoB problem where
M = 1. If all demand pairs of a Steiner Forest instance have a common sink, then it
is equivalent to an instance of the well-known Steiner Tree problem. All of the problems
studied in this paper contain Steiner Tree as a special case.

Recall that an a-approzimation algorithm for a minimization problem runs in polynomial
time and returns a solution no more than « times as costly as an optimal solution. The
value « is the approrimation ratio or performance guarantee of the algorithm. Since even
the Steiner Tree problem is MAX-SNP-hard [13], Problems 1.1-1.3 cannot be solved exactly
or approximated to within an arbitrarily small constant factor in polynomial time, assuming
P # NP [4]. We are therefore justified in seeking constant-factor approximation algorithms
for these problems, with the constant as small as possible.

1.2 Overview of Results

Our main results are the following.

e We develop an analysis framework that shows that random sampling, a Steiner Forest
subroutine, and greedy augmentation leads to a constant-factor approximation algo-
rithm for the MRoB problem, provided the subroutine admits what we call strict cost
shares (defined in Section 2).

www.manaraa.com

Problem Studied | Previously Best Approximation | This Paper
MRoB over 1000 [50] 6.83
MuRoB O(logn) [5, 23] 12.66
SSRoB 4.55 [60] 3.55
VPND O(logn) [23, 33| 5.55
SSBaB 216 [61] 76.8

Table 1: Main results of this paper. “Previously best approximation” refers to the smallest
approximation ratio known prior to the conference versions of our work [34, 35, 36]. The
parameter n denotes the number of network vertices.

e We modify, in a simple but novel way, the well-known primal-dual Steiner Forest algo-
rithm of Agrawal, Klein, and Ravi [1] and Goemans and Williamson [29] so that it ad-
mits strict cost shares. Combining this result with the one above, we obtain a random-
ized approximation algorithm for MRoB with an approximation ratio of 4+2v/2 ~ 6.83.

e We extend this algorithm and analysis to obtain a 12.66-approximation algorithm for
the MuRoB problem.

e For the SSRoB problem, we show that every Steiner Tree algorithm admits strict cost
shares and obtain a randomized 3.55-approximation algorithm.

e For the VPND problem, we build on our SSRoB algorithm and analysis to obtain a
randomized 5.55-approximation algorithm.

e We combine ideas from our SSRoB algorithm and analysis with an SSBaB algorithm
of Guha, Meyerson, and Munagala [32] to obtain a randomized 76.8-approximation
algorithm for the SSBaB problem.

Prior to our work, the best-known approximation ratios for the MRoB, MuRoB, SSRoB,
VPND, and SSBaB problems were over 1000 [50]; O(logn), where n is the number of network
vertices [5, 23]; 4.55 [60]; O(logn) [23, 33]; and 216 [61], respectively. See also Table 1.
Our constant-factor approximation algorithm for the VPND problem answers the main open
questions of Gupta et al. [33].

Finally, our 6.83-approximation algorithm for MRoB gives qualitatively new information
about the relative tractability of different network design problems with economies of scale.
Specifically, for many years even the simplest such problems with multiple commodities (like
MRoB) seemed more difficult than relatively complex single-sink network design problems
(such as SSBaB). Our MRoB algorithm shows that this state of affairs arose only because of
a lack of a good algorithm for MRoB, not because of the problem’s intrinsic difficulty.

1.3 Related Work

The literature on approximation algorithms for NP-hard network design problems is vast,
and we will only discuss work that is directly related to the problems studied in this paper. In

www.manaraa.com

this subsection, we only discuss research that occurred prior to or independent of the present
work. Since the publication of preliminary versions of the results in this paper [34, 35, 36],
there has been much research on further applications, generalizations, and improvements of
our algorithms and analysis techniques. We survey this recent research in Section 6.

1.3.1 Rent-or-Buy Network Design

Rent-or-buy problems have long served as a simple model of network design with economies
of scale—where the per-unit cost of installing capacity on an edge decreases as more capacity
is installed. They also arise naturally in other applications, including stochastic optimization
problems [45, 50] and facility location problems [50, 60].

For many years, the best algorithm known for the MRoB problem was an O(log nloglog n)-
approximation algorithm, where n denotes the number of network vertices, due to Awerbuch
and Azar [5] and Bartal [9]. (Recent work by Fakcharoenphol, Rao, and Talwar [23] can be
used to improve the approximation ratio of this algorithm to O(logn).) The first constant-
factor approximation algorithm for the problem is due to Kumar, Gupta, and Roughgar-
den [50]. However, both the analysis and the primal-dual algorithm of [50] are quite compli-
cated, and the performance guarantee shown for the algorithm is, while constant, extremely
large. This constant was neither optimized nor estimated in [50], but it is at least 1000. Our
MRoB algorithm is the first constant-factor approximation algorithm for the problem that
is simple or that has a reasonably small constant performance guarantee.

The SSRoB special case or MRoB, and the closely related connected facility location
problem, have been extensively studied in the operations research literature [47, 51, 52] and
by the computer science community [33, 45, 46, 56, 60]. Karger and Minkoff [45], motivated
by the so-called maybecast problem, gave the first constant-factor approximation algorithm
for the problem. This algorithm is simple and combinatorial, but has a relatively large
performance guarantee. Gupta et al. [33] subsequently employed an LP-rounding approach
to improve the approximation ratio. Prior to our work, the best algorithm for the problem
was the primal-dual 4.55-approximation algorithm due to Swamy and Kumar [60].

Finally, our random sampling approach to the MRoB problem is reminiscent of and par-
tially inspired by previous work that gave online algorithms with polylogarithmic competitive
ratios for many rent-or-buy-type problems [6, 7, 10, 11].

1.3.2 Virtual Private Network Design

The virtual private network design problem considered in this paper was defined by Fin-
gerhut et al. [24] and, subsequently and independently, by Duffield et al. [20]. The model
is motivated by the many difficulties in estimating or assuming knowledge of a fixed traffic
matrix for a network (see [20, 24]). The VPND problem was later studied by Gupta et al. [33]
with an eye toward approximation algorithms.

Prior to our work, the best known algorithm for the VPND problem was a straightfor-
ward application of probabilistic tree embeddings [23], which only guarantees a O(logn)-
approximation, where n is the number of vertices. For the special case of VPND where
bin(J) = bout(j) for every demand j € D, a 2-approximation is known [24, 33]. Also, Gupta

www.manaraa.com

et al. [33] gave a 10-approximation algorithm for the special case of the VPND problem in
which the the union of the routing paths {P;;}; jep is required to form a tree.

1.3.3 Buy-at-Bulk Network Design

Rent-or-buy problems are a special case of buy-at-bulk network design, where the goal is
the same but the cost of installing capacity is given by an arbitrary concave function (or,
nearly equivalently, by a set of cable types). Buy-at-bulk network design has been intensely
studied over the last several years. After the problem was introduced by Salman et al. [59],
a long line of papers have presented successively superior algorithms for increasingly general
versions of the problem.

For the SSBaB problem considered here (Problem 1.3), the first non-trivial approximation
was found by Awerbuch and Azar [5], using the tree embeddings of Bartal [8], and the first
constant-factor approximation algorithm was given by Guha, Meyerson, and Munagala [32].
The performance guarantee of the combinatorial algorithm in [32] was not stated explicitly,
though Talwar [61] estimated it to be roughly 2000. Talwar [61] subsequently gave an LP-
rounding algorithm with an improved performance guarantee of 216, the best known before
our work.

Many researchers have studied other types of single-sink network design problems with
economies of scale, including the more specialized Access Network Design problem [3, 31,
32, 54|, and the generalizations of SSBaB in which the capacity cost function can be edge-
dependent [16, 53] or unknown to the algorithm [28]. The best known approximation ratios
for these three problems are 68 [54], O(logn) [16, 53], and O(logn) [28], respectively. Recent
results of Chuzhoy et al. [17] rule out constant-factor approximation algorithms for the second
problem under reasonable complexity-theoretic assumptions.

For the multicommodity buy-at-bulk network design problem, the best known approxima-
tion ratio is O(logn), which follows from combining the algorithm of Awerbuch and Azar [5]
with the probabilistic tree embeddings given by Fakcharoenphol, Rao, and Talwar [23]. An-
drews [2] recently proved that, under reasonable complexity-theoretic assumptions, there is
no constant-factor approximation algorithm for this problem. Very recently, Charikar and
Karagiozova [15] gave the first non-trivial approximation algorithm for the generalization of
this problem in which the concave capacity cost function can vary from edge to edge.

1.3.4 Steiner Forest

The first non-trivial approximation algorithm for the Steiner Forest problem was the 2-
approximation algorithm due to Agrawal, Klein, and Ravi [1]. Subsequently, Goemans and
Williamson [29, 30] reinterpreted the algorithm and analysis of [1], and generalized them to a
wide class of network design problems. Very recently, Kénemann, Leonardi, and Schéfer [49]
gave a somewhat different 2-approximation algorithm for the Steiner Forest problem. Their
algorithm is related to the Steiner Forest algorithm that we present in Subsection 3.3.

www.manaraa.com

1.3.5 Cost Sharing

Cost sharing has long been a fundamental subject in game theory and economics; see e.g. [63]
and the references therein. Our definition of strict cost-sharing methods in Section 2 is
somewhat reminiscent of well-known concepts in cooperative game theory, including the
core and the nucleolus. However, we are not aware of any work in the game theory literature
that studies our notion of strict cost sharing.

Techniques from approximation algorithms have recently yielded new progress on several
cost-sharing problems [39, 43, 44, 49, 55]. We believe the present work to be the first showing
that ideas from cost sharing can lead to better approximation algorithms.

1.4 Paper Organization

Section 2 presents our analysis framework, defines strict cost shares, and proves that random
sampling, a Steiner Forest subroutine that admits strict cost shares, and greedy augmentation
leads to a constant-factor approximation algorithm for MRoB. Section 3 applies this frame-
work to the SSRoB, MRoB, and MuRoB problems. In Section 4, we build on our SSRoB
algorithm and analysis and design a constant-factor approximation algorithm for the VPND
problem. Section 5 applies our analysis tools to the SSBaB problem. Sections 3 5 all logically
depend on the concepts in Section 2. Sections 4 and 5 also depend on Subsection 3.1, though
Sections 3 5 are otherwise independent. Finally, Section 6 discusses recent work motivated
by this paper and possible directions for future research.

2 The Analysis Framework

This section describes our high-level algorithm and analysis framework for the MRoB prob-
lem. Subsection 2.1 presents our MRoB algorithm. Subsection 2.2 bounds its expected cost
when solving a randomly sampled subproblem. Subsection 2.3 defines strict cost shares, and
Subsection 2.4 uses them to bound the expected cost of the greedy augmentation step of our
MRoB algorithm.

2.1 Random Sampling and Greedy Augmentation

Our algorithm for the MRoB problem is given in Figure 1. It first randomly samples a subset
of demand pairs, with probabilities proportional to weights and inversely proportional to the
ratio M of the buying and renting costs. It then buys capacity on edges so that each demand
pair in the random sample is connected by an infinite-capacity path. Finally, our algorithm
augments the capacity of the bought edges by greedily renting capacity for all demand pairs
that did not participate in the random sample.

The sampling step in Figure 1 is self-explanatory. For the subproblem step, we will
employ an algorithm that is a good approximation algorithm for Steiner Forest and also
satisfies an additional property that we describe in Subsection 2.3 below. We implement the
augmentation step as follows. After the subproblem step, every demand pair (s;,¢;) in the
subset S is connected by a path of (infinite-capacity) bought edges in F. Let G/F denote

www.manaraa.com

Input: an MRoB instance (G, D, w, M).

1. (Sampling step) Choose a random subset & C D of demand pairs, by including each
pair (s;,t;) € D in S independently with probability min{w; /M, 1}.

2. (Subproblem step) Compute a feasible solution F' to the Steiner Forest instance (G, S),
and buy (infinite) capacity on the edges of F.

3. (Augmentation step) Greedily rent capacity to produce a feasible solution.
Figure 1: The algorithm SAMPLE-AUGMENT.

the graph obtained from G by contracting all of the edges of F. Independently for each
demand pair (s;,t;) ¢ S, we compute a shortest s;-t; path P; of G/F, and rent w; units
of capacity on each edge of]31 that are reserved for exclusive use by (s;, ;). Each path]3Z
corresponds to an s;-t; path P; of G, where each edge of P; either has infinite capacity or
has w; units of capacity reserved for the demand pair (s;,%;). The augmentation step thus
installs sufficient capacity for all of the demand pairs to simultaneously route their traffic on
the paths {P;}5_ .

The following lemma will be used in the next subsection and also motivates the SAMPLE-
AUGMENT algorithm.

Lemma 2.1 For every MRoB instance, there is an optimal solution such that the flow of
each demand pair can be routed on a single path.

Proof: Fix an arbitrary MRoB instance (G, D, w, M) and an optimal solution for it. Let F'
denote the edges on which the optimal solution buys infinite capacity. This optimal solution
must also, independently for each demand pair (s;,t;), reserve w; units of capacity on s;-t;
paths of the contracted graph G/F. The minimum-cost way to accomplish this is to rent
w; units of capacity for each demand pair (s;,¢;) on a shortest s;-t; path of G/F, as in the
augmentation step of the SAMPLE-AUGMENT algorithm. Applying this augmentation step
to the set F' thus results in an optimal solution in which the traffic of each demand pair can
be routed on a single path. B

The proof of Lemma 2.1 shows that the augmentation step of the algorithm SAMPLE-
AUGMENT extends the subproblem solution into a feasible solution in an optimal way. The
crux of the MRoB problem is to identify a good set of edges on which to buy infinite capacity.
We will show that the random Steiner Forest instance defined by the sampling step of the
SAMPLE-AUGMENT algorithm leads to such a good set of edges.

The rest of this section is devoted to proving that, provided the right type of Steiner
Forest algorithm is used in the subproblem step, the algorithm SAMPLE-AUGMENT is a good
approximation algorithm for MRoB. In Section 3 we design algorithms for Steiner Forest that
possess the requisite properties.

www.manaraa.com

2.2 Bounding the Subproblem Cost

Algorithm SAMPLE-AUGMENT incurs cost both in the subproblem step (for buying capacity)
and in the augmentation step (for renting capacity). We first prove a key lemma that is useful
for bounding both of these costs. The lemma states that, in expectation, there is a low-cost
solution to the random Steiner Forest instance solved in the subproblem step of the algorithm
SAMPLE-AUGMENT.

Lemma 2.2 For every instance T = (G, D, w, M) of MRoB,

OPTyrron
M @)
where OPTyrop 1S the cost of an optimal solution for I, OPTs is the cost of an optimal
solution for the Steiner Forest instance (G, S), and the expectation is over the random sample
S chosen in the sampling step of the algorithm SAMPLE-AUGMENT.

E[OPTs] <

Proof: Fix an instance Z of MRoB. We prove (1) by exhibiting one feasible solution for each
possible Steiner Forest instance (G, S), such that the expected cost (over S) of this solution
is at most OPTyrop/M. Since this goal is only for the analysis, and is independent of the
algorithm SAMPLE-AUGMENT, we can freely make use of an optimal solution for Z. By
Lemma 2.1, we can consider an optimal solution that routes all of the traffic of each demand
pair (s;,t;) € D on a single path P*. For an edge e, let 2* = Zi:eeP; w; denote the amount
flow routed on the edge e. Let Ej, denote the edges e with 7 > M and E, the rest of the
edges. The cost OPThygop of the optimal solution is

OPTyirop = Z ceM + Z Cells. (2)

eeEb EGET

To prove (1), fix a possible random sample S C D, and define a Steiner forest Fs by

Fs = E, U U Py
(Si,tl‘)ES

Note that F consists of one part (E},) that does not depend on S, and one part (U, +,)es ;)
that does, and is certainly a feasible solution for the Steiner Forest instance (G,S). The cost
of the first part is deterministically ¢(Bj) =) ,cp, ce, a factor of M less than the cost
incurred by the optimal solution for Z for buying capacity on these edges. The expected cost
of the second part is a factor of M less than the cost incurred by the optimal solution for
renting capacity, because we include a demand pair (s;, ;) in the sample & with probability
only w;/M. Formally, we bound the expected cost of Fs as follows:

Ec(Fs)] = Elc(B)]+E [c(E N (U pesP))]
= c(Ey)+ Y co-Pre€ Us, ey

< ¢(Ey) + Z Ce Z Pr((s;, t;) € S

eck, 1reeP;

:L,*
= B+ ceyt

GGET

9

www.manaraa.com

where the inequality follows from the Union Bound. Thus the expected cost of Fs is at most
the cost of an optimal solution (2) divided by M. Since E[OPTs| < E[c¢(Fs)], this proves
the lemma. W

Lemma 2.2 easily implies that the expected cost of the subproblem step of SAMPLE-
AUGMENT is small provided a good approximation algorithm for Steiner Forest is used.

Lemma 2.3 If an a-approzimation algorithm for Steiner Forest is used in the subproblem
step of SAMPLE-AUGMENT, then the expected cost incurred in this step is at most « times
the cost of an optimal MRoB solution.

Proof: Fix an arbitrary instance Z of MRoB. Let A be the a-approximation algorithm used
in the subproblem step of SAMPLE-AUGMENT. The cost incurred in this step is M times
that of the Steiner forest F' returned by A, since SAMPLE-AUGMENT buys infinite capacity
on the edges of F'. This cost is at most M - «- OPTs for every possible random sample S of
demand pairs. The expected cost is thus at most M - a - E[OPTs|, which by Lemma 2.2 is
at most a- OPTyr,5. B

The next two subsections undertake the more challenging task of bounding the expected
cost of the augmentation step of the SAMPLE-AUGMENT algorithm.

2.3 Strict Cost Shares

Our analysis of the expected cost of the augmentation step of the SAMPLE-AUGMENT al-
gorithm hinges on a type of cost sharing for the Steiner Forest problem. We next define
what we call strict cost shares. While our definition is motivated solely by our analysis of
SAMPLE-AUGMENT, it can also be interpreted as formalizing a natural approximate fairness
condition.

The next definition states that a cost-sharing method is a way of allocating cost to the
demand pairs of a Steiner Forest instance (G, D), with the total cost allocated bounded above
by that of a minimum-cost Steiner forest for (G, D).

Definition 2.4 Let y be a function that, for every instance Z = (G, D) of Steiner Forest,
assigns a nonnegative real value x(Z, (s;,t;)) to every demand pair (s;,t;) € D. The function
X is a (Steiner forest) cost-sharing method if, for every such instance Z,

Z X(Z, (si, ti)) < OPT(Z), (3)
(si,ti)GD
where OPT(Z) is the cost of an optimal solution to Z.

Definition 2.4 permits some rather uninteresting cost-sharing methods, including the
function that always assigns all demand pairs zero cost. The key additional property that
we require of a cost-sharing method is that, intuitively, it allocates each demand pair a
cost share commensurate with its distance from the edges needed to connect all of the
other demand pairs. Put differently, no demand pair can be a “free rider,” imposing a large

10

www.manaraa.com

burden in building a Steiner forest, but only receiving a small cost share. We call cost sharing
methods with this property strict. Strict cost shares will allow us to charge, in a demand
pair-by-demand pair fashion, a constant fraction of the expected cost of the augmentation
step of SAMPLE-AUGMENT to the expected cost of an optimal solution to the Steiner Forest
subproblem. We have already bounded the latter cost in Lemma 2.2.

To make this idea precise, we require further notion. Let ¢ (u, v) denote the length of a
shortest path between the vertices u and v in the graph G (with respect to the edge costs
of G). As in Subsection 2.1, for a graph G and a set of edges F' of G, G/F denotes the
graph obtained from G by contracting all of the edges of F'. As in the augmentation step of
the algorithm SAMPLE-AUGMENT, the minimum per-unit cost of renting capacity between
s; and t;, given that infinite capacity has already been bought on the edges in F', is precisely
lcyr(8i,t;). Our main definition is then the following.

Definition 2.5 Let A be a deterministic algorithm for the Steiner Forest problem. A Steiner
forest cost-sharing method x is [-strict for A if for all instances Z = (G, D) and for all
demand pairs (s;,t;) € D,

layp(siti) < B-x(Z, (si,ti)),

where F' is the Steiner forest returned for the instance (G, D\ {(s;,t;)}) by the algorithm A.

Remark 2.6 Definition 2.4 makes no reference to an algorithm for Steiner Forest, but Defi-
nition 2.5 does. Thus a Steiner forest cost-sharing method can be f-strict for one algorithm
and not for another. For example, every cost-sharing method is strict with respect to the
(highly suboptimal) algorithm that always returns the entire graph G as the Steiner forest so-
lution F'. Our challenge will be to give a strict cost-sharing method for a good approximation
algorithm for Steiner Forest.

We say that an algorithm is strict if it admits a strict cost-sharing method.

Definition 2.7 An algorithm A for the Steiner Forest problem is [3-strict if there exists a
cost-sharing method that is S-strict for A.

Strict cost shares will pay dividends in Lemma 2.9 below, where we show that they are the
key property of a Steiner Forest algorithm that allows us to bound the expected augmentation
cost of the algorithm SAMPLE-AUGMENT.

Example 2.8 (Prim Cost Shares) We now give an example of a strict cost-sharing method
for the special case of the SSRoB problem, where all demand pairs share the same sink vertex
t. In this case, the subproblem step is an instance (G,S) of Steiner Tree, where we must
output a set F' of edges spanning ¢ and all of the source vertices s; in demand pairs of S.
Suppose we use the well-known MST heuristic as our Steiner Tree algorithm A, implemented
with Prim’s MST algorithm (see e.g. [62]). In more detail, we iteratively build up a feasible
solution to (G, S) as follows. Initially, set D = {t} and F' = (). At each iteration, among all
sources in a demand pair of § but not in D, find the source s; closest to some source or sink
already in D; add s; to D; and add to F' a shortest path between s; and its nearest neighbor
in D.

11

www.manaraa.com

For an instance Z = (G, S) of Steiner Tree, define the cost share x(Z, (s;,t)) of (s;,t) as
half of the length of the shortest path used in the iteration of the algorithm that adds s; to
D. We call these Prim cost shares. We claim that the function y satisfies both Definition 2.4
and Definition 2.5 with § = 2. Definition 2.4 is met because the sum of all of the cost shares
is exactly half of the cost of the Steiner tree output by the MST heuristic, which in turn is
at most twice the cost of a minimum-cost Steiner tree (see e.g. [62]).

To see why the cost shares y are 2-strict for the algorithm A, consider an arbitrary Steiner
Tree instance Z = (G, S) and demand pair (s;,t) € S. Consider running the algorithm A
in parallel on the instances Z and Z = (G, S\ {(s;,t)}). The key observation is this: these
two executions of A are identical, until the demand pair (s;,t) of Z is considered. In other
words, if A chooses (s;,t) in iteration j > 1 of its execution for the original instance Z, then
the partial solution Fj_; that A has constructed after j — 1 iterations is the same in both
executions of the algorithm. Suppose when algorithm A is run on the instance Z, it connects
s; to Fj_; via the path P, where P is a shortest path between s; and some previously added
source or sink. Since A’s final solution F to the instance Z includes F;_y, the shortest-path
distance £ 7 (s;, ?) is at most the cost ¢(P) of P. Since the cost share x(Z, (s;, t)) is precisely
¢(P)/2, Definition 2.5 is satisfied with g = 2.

2.4 Bounding the Augmentation Cost

The definition of strict cost shares is engineered so that the following upper bound on the
expected augmentation cost of the algorithm SAMPLE-AUGMENT holds.

Lemma 2.9 If a (-strict algorithm for Steiner Forest is used in the subproblem step of
SAMPLE-AUGMENT, then the expected cost incurred in the augmentation step of SAMPLE-
AUGMENT is at most B times the cost of an optimal MRoB solution.

Proof: Suppose the f-strict Steiner Forest algorithm A is used in the subproblem step of the
algorithm SAMPLE-AUGMENT and fix an MRoB instance (G,D,w, M). For each demand
pair (s;,t;) € D, we define two random variables. First, the random variable R; (“renting
cost”) has value 0 if (s;, ;) is included in the random sample S, and otherwise has value equal
to the renting cost w; - €g/r(si, ;) caused by (s;,1;) in the augmentation step, where F' is the
Steiner Forest solution returned by A for the instance (G,S). Second, the random variable
B; (“buying cost”) has value M - x((G, S), (i, ;) if (s, ;) is included in the random sample
S and 0 otherwise. Note that the cost incurred by SAMPLE-AUGMENT in the augmentation
step is precisely the total renting cost) . R;. The total buying cost satisfies

iBi: Y M-x((G.S), (sit) < M- OPT(G,S), (4)

i=1 (si,ti)ES

where the inequality follows from Definition 2.4. Lemma 2.2 then implies that the expected
total buying cost is at most the cost O PTy;r,p of an optimal solution to (G, D, w, M):

k

DB

i=1

E < OPTrros- (5)

12

www.manaraa.com

The rest of the proof shows how to use strict cost shares to charge, up to a factor of 3, the
expected renting cost incurred by SAMPLE-AUGMENT to the expected buying cost.

Fix a demand pair (s;,?;). Condition on the set S C D\ {(s;,t;)} of other demand pairs
that SAMPLE-AUGMENT includes in its random sample. Let S denote SU{(s;,#;)}. Thus the
subproblem step will involve either the Steiner Forest instance 7= (G, SA’) (with probability
min{w;/M,1}) or the instance Z = (G,S) (with the remaining probability). The expected
renting cost incurred by (s;,t;), conditioned on S, can therefore be crudely bounded by

E[R;|S] = (1 — min {%, 1}) w; - Layr(si, ti) < minfw;, M} - Lap(si, t), (6)
where F'is the output of A for the Steiner Forest instance Z. The expected buying cost is
E[B:(S] = min{ 17,1} - M- x(Z, (5i,t)) = min{uws, M} - X(Z, (s:.1). (7)

Strict cost shares provide the key relation between renting and buying costs. Specifically,
since A is (-strict, inequality (6) and equation (7) imply that

E[R;|S] < p-E|[B;|S].
Since this inequality holds for every set S € D\ {(s;,%;)}, it also holds unconditionally:
E[R] < B-E[B].

Linearity of expectations and inequality (5) complete the proof:

k
2B,
i=1

< B-OPTyroB-

k

>n

i=1

E < B-E

Lemmas 2.3 and 2.9 immediately imply the main result of this section: SAMPLE-AUGMENT
is a good approximation algorithm for MRoB, provided a good, strict Steiner Forest algorithm
is used in the subproblem step.

Theorem 2.10 If a [(-strict a-approximation algorithm for Steiner Forest is used in the
subproblem step of SAMPLE-AUGMENT, then SAMPLE-AUGMENT is a randomized (o + 3)-
approximation algorithm for MRoB.

3 Rent-or-Buy Problems

We next apply the analysis framework of Section 2, and Theorem 2.10 in particular, to
several rent-or-buy problems. We begin in Subsection 3.1 with the special case of the SSRoB
problem, and show how the results of Section 2 easily give a simple algorithm with a better
performance guarantee than all previously known approximation algorithms for the problem.

13

www.manaraa.com

We then consider the more general MRoB problem. We first show (Subsection 3.2) that
the well-known primal-dual 2-approximation approximation algorithm for the Steiner Forest
problem [1, 29] does not admit simple O(1)-strict cost shares. In Subsection 3.3 we modify
this algorithm so that it remains an O(1)-approximation algorithm for Steiner Forest and also
admits simple O(1)-strict cost shares, which leads to an O(1)-approximation algorithm for
MRoB via Theorem 2.10. Finally, Subsection 3.4 extends our MRoB algorithm and analysis
to the MuRoB problem.

3.1 Single-Sink Rent-or-Buy

A good approximation algorithm for the SSRoB problem follows immediately from the Prim
cost shares of Example 2.8 and Theorem 2.10. Specifically, in Example 2.8 we argued that
the MST heuristic is a 2-approximation algorithm for the Steiner Tree problem and admits
2-strict cost shares. Theorem 2.10 then implies the following.

Theorem 3.1 Algorithm SAMPLE-AUGMENT, with the subproblem step implemented with
the MST heuristic, is a 4-approximation algorithm for the SSRoB problem.

Theorem 3.1 already improves over the previously best algorithm for the SSRoB problem,
the primal-dual 4.55-approximation algorithm of Swamy and Kumar [60].

We can achieve a slightly better approximation ratio by refining Definition 2.5 and The-
orem 2.10 for the SSRoB problem. For the rest of this subsection, we call a source or sink of
a Steiner Tree instance a demand.

Definition 3.2 A Steiner tree cost-sharing method x is universally B-strict if for all Steiner
Tree instances Z = (G, D) and for all demand pairs (s;,t) € D,

(si, D\ {si}) < B-x(Z, (51, 1)),

where D denotes the set of demands of Z and ¢(s;, D \ {s;}) the length of a shortest path
between s; and some other demand.

Example 3.3 Recall that the Prim cost shares defined in Example 2.8 assign to each de-
mand pair (s;,t) a cost share equal to half of the length of a shortest path between s; and
some other demand. This is at least half of the length ¢(s;, D \ {s;}) of the shortest such
path. Prim cost shares are therefore universally 2-strict.

The next lemma justifies the use of the word “universal” in Definition 3.2: universally
strict cost shares are strict with respect to every Steiner Tree algorithm.

Lemma 3.4 If x is a universally [3-strict Steiner tree cost-sharing method and A is a Steiner
Tree algorithm, then x is B-strict for A.

Proof: To satisfy Definition 2.5, we must show that /g r(s;,t) < 8- x(Z, (si,t)) for every
Steiner Tree instance Z = (G, D) and every demand pair (s;,t) € D, where F' is the output

14

www.manaraa.com

of A for the Steiner Tree instance (G, D\ {(s;,%)}). Letting D denote the set of demands of
Z, this inequality holds as

leyr(sit) < L(si, D\ {s:i}) < B-x(Z, (s, 1)),

where the first inequality follows the fact that F' must include a path between ¢ and every
other demand in D \ {s;}, and the second inequality follows from Definition 3.2. W

Theorem 2.10 and Lemma 3.4 immediately give the following result.

Theorem 3.5 Suppose there is a universally [(3-strict Steiner tree cost sharing method. If
an a-approzimation algorithm for Steiner Tree is used in the subproblem step of SAMPLE-
AUGMENT, then SAMPLE-AUGMENT is a randomized (o« + [3)-approzimation algorithm for
SSRoB.

Theorem 3.5 decouples the tasks for finding a good Steiner Tree approximation algo-
rithm and finding (universally) strict cost shares. Combining the universally 2-strict Prim
cost shares and the 1.55-approximation algorithm for Steiner Tree due to Robins and Ze-
likovsky [58] then yields a 3.55-approximation algorithm for SSRoB.

Corollary 3.6 There is a randomized 3.55-approrimation algorithm for the SSRoB problem.

Remark 3.7 The same graphs that show that the MST heuristic is no better than a 2-
approximation algorithm for Steiner Tree (see e.g. [62, Example 3.4]) prove that for every
constant § < 2, there is no universally [-strict Steiner tree cost sharing method. On the
other hand, better upper bounds on the approximation ratio of SAMPLE-AUGMENT could
follow from stricter cost shares that are not universally strict, or from improvements to the
upper bound in Theorem 3.5.

Remark 3.8 In the proof of Lemma 3.4, we crucially used the fact that every feasible
solution to a Steiner Tree instance is a single connected component. Since different feasible
solutions to a Steiner Forest instance can have different sets of connected components, there
do not seem to be useful analogues of Definition 3.2 and Theorem 3.5 for the Steiner Forest
and MRoB problems, respectively.

3.2 Multicommodity Rent-or-Buy: Motivation

In the next subsection, we design a constant-factor approximation algorithm for the MRoB
problem. The algorithm, and especially the analysis, will be more involved than in Sub-
section 3.1. This subsection motivates our algorithm. We first review the primal-dual
2-approximation algorithm for Steiner Forest due to Agrawal, Klein, and Ravi [1] and Goe-
mans and Williamson [29], which is closely related to our Steiner Forest subroutine. We then
present an instance of MRoB that suggests that the algorithm of [1, 29] should be made
“more aggressive” to facilitate the definition of strict cost shares (and the application of
Theorem 2.10).

15

www.manaraa.com

3.2.1 The AKR-GW Algorithm

We now review the 2-approximation algorithm for Steiner Forest due to Agrawal, Klein, and
Ravi [1] and Goemans and Williamson [29], which we refer to as the AKR-GW algorithm.
Our exposition will be similar to that in [29]. Until very recently [49], this was the only
known constant-factor approximation algorithm for the problem.

Fix an instance Z = (G, D) of Steiner Forest. For a subset S C V of vertices and a
demand pair (s;,t;), we say that S separates (s;,t;) if S contains exactly one of s; or t;. The
set S is a Steiner cut of Z if it separates some demand pair. Let C denote set of Steiner cuts
of Z. Finally, let 6(S) denote the set of edges with exactly one endpoint in the vertex set
S C V. The AKR-GW algorithm iteratively constructs a feasible integral solution to the
linear relaxation

min E Cop

eck
subject to:
(PLP) Z Te > 1 for every Steiner cut S € C
ecd(S)
Te > 0 for every edge e € F,

and a feasible solution to the corresponding dual linear program

max Zyg

sec
subject to:
(DLP) Z ys < Ce for every edge e € E
SEC:ecd(S)
ys >0 for every Steiner cut S € C.

The 0-1 integer solutions to (PLP) are precisely the incidence vectors of the feasible
solutions of Z. By weak linear programming duality (see e.g. [18]), the objective function
value of every feasible (fractional) solution to the dual program (DLP) is a lower bound on
the objective function value of every feasible (fractional) solution to (PLP), and in particular
on the value of a minimum-cost Steiner forest for (G, D).

The AKR-GW algorithm is shown in Figure 2. It maintains a set of edges, initially
empty; a feasible dual solution, initially the all-zero solution; and a partition of the vertices,
initially with all vertices in their own class of the partition. Edges in the current primal
solution are called tight. We will call classes of the vertex partition clusters. The algorithm
will maintain the invariant that clusters correspond to the connected components of the set
of tight edges. A cluster is active if it is a Steiner cut and inactive otherwise.

In every iteration of the first part of the AKR-GW algorithm, the dual variables of the
currently active clusters are increased by the largest common amount that does not violate
any of the dual packing constraints of the form 25661665(5) ys < ce. (If these dual variables
can be increased by an arbitrarily large amount, then the instance (G, D) is infeasible.)
After this dual increase, there is at least one edge whose packing constraint is satisfied with

16

www.manaraa.com

Input: a Steiner Forest instance (G, D).
1. Initialize all of the dual variables ys to 0 and the clusters to the vertices {v},cy.

2. While there is at least one active cluster (a cluster separating some demand pair):

(a) Uniformly raise the dual variables of the active clusters as much as possible with-
out violating dual feasibility.

et e be an edge satisfyin , s = C¢, where the endpoints of e are in
b) Let e b dge satisfying sec:ecs(s) Y here th dpoints of i
distinct clusters, at least one of which is active. Declare e to be tight.

(¢) Merge the two clusters containing the endpoints of e into a single cluster.

3. Output the tight edges essential for feasibility.
Figure 2: Outline of the AKR-GW algorithm.

equality and with endpoints in different clusters, at least once of which is active. One such
edge e is then deemed tight, and the two clusters containing the endpoints of e are merged
into a single cluster. Note that one of these two old clusters could have been inactive, and
the new cluster could be active or inactive. Eventually, all clusters are inactive and this
portion of the algorithm halts.

For convenience, we associate a notion of time with this phase of the AKR-GW algo-
rithm. At the beginning of the algorithm the time 7 is set to 0. Every time dual variables
are increased, the current time increases by the same amount as the dual variables.

Ties between different potentially tight edges at a given time can be broken arbitrarily.
However, we assume throughout this paper, and particularly in Lemma 3.25 below, that
the AKR-GW algorithm is implemented with a consistent tie-breaking rule (such as a
lexicographic rule).

The final and most subtle step of the AKR-GW algorithm identifies a subset of the tight
edges that is a feasible solution and also has low cost. Several slightly different implemen-
tations of this “delete step” have been proposed [1, 29, 30]. With an eye toward our Steiner
Forest algorithm in the next subsection, we adopt that of Goemans and Williamson [29].
Precisely, let F' denote the set of tight edges. An edge of F' is inessential if F'\ {e} is a
feasible solution for (G, D), and essential otherwise. The final output of the AKR-GW
algorithm is the set of essential tight edges. The algorithm can clearly be implemented in
polynomial time. For fast implementations, see [19, 26, 48].

It is not immediately obvious that the algorithm AKR-GW outputs a feasible solution,
let alone one with low cost. Nonetheless, Agrawal, Klein, and Ravi [1] and Goemans and
Williamson [29] proved the following guarantee.

Theorem 3.9 ([1, 29]) For every Steiner Forest instance (G, D), the AKR-GW algorithm
outputs a feasible dual solution {ys}sec and a feasible Steiner forest F' C E satisfying

ZceSQZyS- (9)

eck Sec

17

www.manaraa.com

)
tZI.

()
()
)
4
—)

1 1 1
1+8 _ " x = — 1+£

Figure 3: Example 3.10. A Steiner Forest instance showing that no straightforward cost-
sharing method for the AKR-GW algorithm is O(1)-strict.

Since the sum on the right-hand side of (9) is a lower bound on the value of a minimum-
cost Steiner forest of (G,D), Theorem 3.9 implies that the AKR-GW algorithm is a 2-
approximation algorithm for the Steiner Forest problem.

We will prove a generalization of Theorem 3.9 in Subsection 3.3 and Appendix A.

3.2.2 A Tricky Instance for the AKR-GW Algorithm

In light of Theorem 2.10, a natural idea is to use the AKR-GW algorithm as the Steiner
Forest subroutine in the SAMPLE-AUGMENT algorithm and attempt to define O(1)-strict
cost shares for it. Such cost shares would give a constant-factor approximation algorithm
for MRoB. Moreover, the dual variables constructed by the AKR-GW algorithm suggest
the following family of natural Steiner forest cost-sharing methods: when a dual variable yg
is increased by an additive factor of A, increase the cost shares of the demand pairs that
are separated by S by at most A, with this increase split between these cost shares in an
arbitrary way. The sum of cost shares defined in this way is at most the value of the dual
feasible solution constructed by the AKR-GW algorithm, which in turn is at most the value
of a minimum-cost Steiner forest. Such cost shares thus satisfy Definition 2.4. But are they
strict?

Our next example shows that no cost-sharing scheme of this type is O(1)-strict for the
AKR-GW algorithm. Precisely, call a Steiner forest cost-sharing method x straightforward
for AKR-GW if, for every Steiner Forest instance Z = (G, D) and every demand pair
(si,t;) € D, the cost share x(Z, (s;,t;)) is at most the sum of the dual variables yg of the
AKR-GW algorithm that correspond to clusters S that separate (s;,%;). Note that all of
the cost-sharing methods in the aforementioned family are straightforward for AKR-GW
in this sense.

Example 3.10 Consider the Steiner Forest instance Z shown in Figure 3, where n is arbitrar-
ily large and € < 1/n. We will show that every cost-sharing method x that is straightforward
for AKR-GW is Q(n)-strict for AKR-GW.

Consider the execution of the AKR-GW algorithm on the instance Z just after the
time % There are n + 1 clusters: s; and ¢; are each in an (active) singleton cluster, and s;
and t; share an (inactive) cluster for i = 2,3,...,n. By the time 7% = (1 + €n)/2, all of the
vertices lie in the same (inactive) cluster. The maximum cost share that can be allocated to

18

www.manaraa.com

the demand pair (sy,%;) by the straightforward cost-sharing method x is 27 = O(1).

Now let Z denote the instance (G, D\ {(s1,#)}) and consider the execution of the AKR-
GW algorithm on Z. All clusters are inactive by the time %, and the final output of the
algorithm is the set F' of unit cost edges. The s;-t; distance (g, p(s1,t1) is thus n(l +¢€) =

2(n). The cost-sharing method y is therefore only Q(n)-strict.

Example 3.10 suggests the following more delicate strategies for using Theorem 2.10 to obtain
a constant-factor approximation algorithm for the MRoB problem.

(1) Modify the AKR-GW algorithm, presumably by forcing it to build a limited number
of additional edges, so that there is a straightforward cost-sharing method that is
O(1)-strict.

(2) Design a non-straightforward O(1)-strict cost-sharing method for the AKR-GW al-
gorithm.

In the next subsection, we successfully pursue the first approach and obtain a (4 + 2\/5)—
approximation algorithm for MRoB. Very recently, Fleischer et al. [25] followed the second
approach and designed a non-straightforward cost-sharing method that is 3-strict for the
AKR-GW algorithm, which by Theorem 2.10 gives a 5-approximation algorithm for MRoB.
They also show that for every 5 < 8/3, there is no fS-strict cost-sharing method for the
AKR-GW algorithm.

3.3 Multicommodity Rent-or-Buy: Algorithm and Analysis

We now give a constant-factor approximation algorithm for the MRoB problem by designing
a constant-factor approximation algorithm for Steiner Forest that admits an O(1)-strict cost-
sharing method. We first show how to make the AKR-GW algorithm “more aggressive”
in a controlled way, and then design strict cost shares for this modified algorithm. The
algorithm and the cost-sharing method are both reasonably simple and are closely based on
the AKR-GW algorithm; only the analysis of our algorithm is involved.

3.3.1 The 7-AKR-GW Algorithm

To modify the AKR-GW algorithm to build additional edges, we make two changes. First,
we prolong the period of time during which tight edges are identified. Second, we modify the
delete step of the AKR-GW algorithm so that it does not completely reverse the progress
made in the earlier phase of the algorithm.

The first modification is fairly easy to implement by altering the rule used to classify
clusters as active or inactive. Recall that we associate a notion of time with the AKR-
GW algorithm, which tracks the amounts by which the algorithm increases dual variables.
For a demand pair (s;,t;) of a Steiner Forest instance, we let T; denote its merging time in
the AKR-GW algorithm the earliest time at which s; and ¢; are contained in a common
cluster. The main idea for acquiring extra tight edges is to force s; and ¢; to remain active
for 77; time units for some v > 1.

19

www.manaraa.com

Input: a Steiner Forest instance (G, D).
1. Run the AKR-GW algorithm and obtain the induced vector T" of merging times.

2. Initialize all of the dual variables yg to 0; the clusters to the vertices {v},cy; and the
partition P to the demands {d}4ep.

3. While there is at least one active cluster (a cluster that contains a demand s; or ¢; for
which v - T; is at least the current time):

(a) Uniformly raise the dual variables of the active clusters as much as possible with-
out violating dual feasibility.

et e be an edge satisfyin , s = €., where the endpoints of e are in
b) Let e b dge satisfying sec:ecs(s) Y here th dpoints of i
distinct clusters, at least one of which is active. Declare e to be tight.

(c) Merge the two clusters containing the endpoints of e into a single cluster.

(d) Merge the classes of the partition P that contain the active demands in these two
clusters into a single class of P.

4. Output the tight edges essential for P-connectivity.
Figure 4: Outline of the y-AKR-GW algorithm.

Formally, let (G, D) be an instance of Steiner Forest, T the corresponding vector of merg-
ing times in the AKR-GW algorithm, and 7 > 1 a parameter. Let D denote the set of
demands (sources and sinks) of (G, D). The first phase of our algorithm, which we call the
v-AKR-GW algorithm, is identical to that in AKR-GW except for the definition of active
and inactive clusters. A demand s; or t; of D is defined to be active if the current time 7 is
less than or equal to 7} and inactive otherwise. A cluster is defined to be active if it contains
at least one active terminal and inactive otherwise. Note that a cluster may be active in the
v-AKR-GW algorithm even though it separates no demand pair. Tight edges are identified
and clusters are merged as in the AKR-GW algorithm; this phase of the algorithm halts
when no active clusters remain.

The 7-AKR-GW algorithm might raise dual variables yg for sets S C V' that are not
Steiner cuts and therefore do not participate in the dual linear program (DLP). Nevertheless,
the algorithm is well defined. Our analysis below will bound the contribution of these
artificial dual variables.

To implement its delete step, the v-AKR-GW algorithm maintains a partition P of
the demands D. Each class of the partition P should be interpreted as a collection of
demands that we want to be mutually connected in the output of the algorithm. Initially,
each demand lies in a separate class of this partition. When two clusters merge, the partition
classes containing currently active demands of the clusters are merged into a single class of
the partition P.

Lastly, consider the final partition P, after all of the clusters have become inactive. A
set of edges is P-connected if it contains a path between every pair of demands that lie in a

20

www.manaraa.com

common class of P. Let F' denote the final set of tight edges. A tight edge e is inessential if
F\ {e} is P-connected and essential otherwise. The output of the algorithm is the essential
tight edges. The 7-AKR-GW algorithm is summarized in Figure 4.

Example 3.11 Suppose we run the y-AKR-GW algorithm on the Steiner Forest instance
7 of Example 3.10, say with v = 2. All of the demands D= {$2,. .., 8n,ta, ..., t,} remain
active until the time 1. As a result, the algorithm constructs a spanning tree of tight edges
that includes all of the unit-cost edges. In the final demand partition P, all of the demands
D are in a single class. The only tight edges not essential for P-connectivity are (si, ss)
and (s,,t;). The final output F' of the algorithm is a spanning tree of the demands D that
includes all of the unit-cost edges, which is roughly twice the cost of an optimal solution

of Z. The shortest-path distance £, p(s1,11) in the contracted graph G/F is only 2 + 2e.

We next establish that the algorithm outputs a set of edges that is a P-connected, feasible
Steiner forest. For Lemmas 3.12-3.18 below, fix an arbitrary instance Z = (G, D) of Steiner
Forest and a parameter v > 1. We begin with the trickiest lemma, which demonstrates a
close connection between the clusters formed in the AKR-GW and y-AKR-GW algorithms.
This lemma will also play an important role in our analysis of the performance guarantee of
the 7-AKR-GW algorithm. Henceforth, we use the notation A(Z) to denote the execution
of the algorithm A on the input Z.

Lemma 3.12 At each time 7, every cluster of AKR-GW (Z) at time 7 is a subset of a
cluster of -AKR-GW (Z) at time 7.

Proof: Call a time 7 interesting if 7 = 0 or if two clusters are merged in one of the two
algorithms at time 7. There are clearly only a finite number of interesting moments in time.
Call the time interval between consecutive interesting moments an epoch. Note that during
an epoch, the clusters of the two algorithms do not change. We will prove the following
strengthening of the lemma for every interesting moments in time 7:

(a) every cluster of the algorithm AKR-GW at time 7 is a subset of a cluster of the
algorithm v-AKR-GW at time 7;

(b) if {yi}sec and {2i}gcy denote the dual solutions of the AKR-GW and 7-AKR-
GW algorithms at time 7, respectively, and e is an edge spanning two clusters of the
v-AKR-GW algorithm at time 7, then

Z yg < Z 2g.

SeC:ecd(S) SCV:ecd(S)

We next prove (a) and (b) by a mutual induction.

The lemma clearly holds when 7 = 0. For the inductive step, consider an interesting
time 7 > 0. Let e be an edge spanning two clusters of the v~-AKR-GW algorithm at the
time 7. We claim that an endpoint v of e was contained in an active cluster S of the AKR-
GW algorithm during the previous epoch only if it was contained in an active cluster of the
7-AKR-GW algorithm during this epoch. This claim follows from part (a) of the inductive

21

www.manaraa.com

hypothesis, which implies that the cluster S of the v-AKR-GW algorithm containing v in
this epoch contains S, and the definition of the v-AKR-GW algorithm, which implies that
a demand is active in the AKR-GW algorithm only when it is also active in the y-AKR-
GW algorithm. This claim and part (b) of the inductive hypothesis prove part (b) of the
inductive step.

For part (a) of the inductive step, we need only consider the case where at time 7
the AKR-GW algorithm merges two clusters, S; and S,. By the inductive hypothesis,
during the epoch preceding the time 7, there were clusters S; and Sy of the y-AKR-GW
algorithm with S; C S; for + = 1,2. Since S; and Sy are merged at time 7, there is an edge
e € 0(S1) Nd(Sy) that is declared tight at time 7. If e is contained in either S; or S,, then
Sl Sy since distinct clusters are disjoint. In this case, S; U .Sy C 51 which proves part (a).
Now suppose that the edge e has exactly one endpoint in each of S, and S,. We have already
shown that (b) holds at time 7, so the dual constraint for e also holds with equality in the
v-AKR-GW algorithm. Thus S; and S, will be merged into a common cluster (containing
S1 U Ss) by the -AKR-GW algorithm at time 7, completing the proof of the inductive
hypothesis and the lemma. B

Lemma 3.12 implies that at every time 7, every cluster of the -AKR-GW algorithm is
a union of clusters of the AKR-GW algorithm. The argument in the proof of Lemma 3.12
will reoccur several times in this section.

Next we note two simple lemmas about the demand partition P constructed by the
v-AKR-GW algorithm. The first follows from a straightforward induction on the cluster
mergings of the algorithm.

Lemma 3.13 Suppose at some time 7 in the execution v-AKR-GW (Z), the demands
di,dy € D of T are in a common class of the current demand partition. Then dy and
dy are also in a common cluster at time 7.

The next lemma is a partial converse of Lemma 3.13.

Lemma 3.14 Suppose at some time 7 in the execution -AKR-GW (Z), the demands
di,dy € D are active and in a common cluster. Then dy and dy are in a common class
of the demand partition at time 7.

Proof: The demands d;, dy were active when their clusters first merged, at which point the
algorithm v-AKR-GW merged the classes of P that contained them. H

Lemma 3.14 inductively implies that when two clusters merge, at most two classes of the
current demand partition are merged. The next lemma notes that each demand pair occupies
only one class of the final demand partition constructed by the y-AKR-GW algorithm.

Lemma 3.15 Let P be the final demand partition constructed by the v-AKR-GW algorithm
and (s;,t;) a demand pair. The demands s; and t; are in the same class of P.

Proof: Let T; denote the merging time of s; and ¢; in AKR-GW(Z). By Lemma 3.12, the
demands s; and ¢; will reside in a common cluster of - AKR-GW (Z) at or before time 7;.

22

www.manaraa.com

Since v > 1, this cluster is active at time 7;. Lemma 3.14 then implies that s; and ¢; share
the same class of the demand partition P. B

Lemma 3.15 implies that if P is the final demand partition of the algorithm y-AKR-GW,
then every P-connected solution is also a feasible Steiner forest for Z. The next lemma proves
that the set of tight edges constructed by the v-AKR-GW algorithm forms a P-connected
solution.

Lemma 3.16 Let F' be the set of tight edges and P the demand partition at the conclusion
of the v-AKR-GW algorithm. Then F is P-connected.

Proof: Suppose the demands dy,dy € D lie in the same class of the final partition P. By
Lemma 3.13, the demands d; and d, lie in the same cluster. Since the y-AKR-GW algorithm
maintains the invariant that the clusters correspond precisely to the connected components
of the set of tight edges, there is a path of tight edges between d; and d,. B

Finally, we show that the algorithm’s delete step does not destroy P-connectivity. Our
argument is essentially due to Goemans and Williamson [29]; we include the details for com-
pleteness. As a preliminary step, we note that the v-AKR-GW algorithm never constructs
a cycle of tight edges.

Lemma 3.17 The final set F of tight edges constructed by the algorithm v-AKR-GW s
acyclic.

Proof: Suppose for contradiction that at some point in the execution of the »-AKR-GW
algorithm, an edge e = (v, w) is declared tight and creates a cycle C' of tight edges. Immedi-
ately prior to e being declared tight, there was a v-w path C'\ {e} of tight edges. But then
v and w would have been in the same cluster at this point in the algorithm, ruling out the
edge e as a candidate to become tight. H

Lemma 3.18 The v-AKR-GW algorithm outputs a P-connected solution, where P is the
final demand partition constructed by the algorithm.

Proof: Let F be the final set of tight edges, which is P-connected by Lemma 3.16 and acyclic
by Lemma 3.17. Let di,ds € D be an arbitrary pair of demands in a common class of P.
Since F'is acyclic, there is a unique d;-dy path P of tight edges. Each edge of P is therefore
essential and will not be deleted by the 7-AKR-GW algorithm. Thus the set of essential
tight edges is P-connected. W

Lemmas 3.15 and 3.18 imply that the y-AKR-GW algorithm always outputs a feasible
Steiner forest.

3.3.2 Performance Guarantee of the v-AKR-GW Algorithm

Our next goal is to show that for every v > 1, the - AKR-GW algorithm is a (v + 1)-
approximation algorithm for the Steiner Forest problem. The main challenge, as alluded to
above, is to account for the contribution of the artificial dual variables (yg for non-Steiner

23

www.manaraa.com

cuts S). Our first lemma bounds the cost of the Steiner forest output by the v-AKR-GW
in terms of both the legitimate and the artificial dual variables. The proof is essentially due
to Goemans and Williamson [29]. For completeness, we include the proof in Appendix A.

Lemma 3.19 For every Steiner Forest instance (G,D) and v > 1, the --AKR-GW algo-
rithm outputs a dual solution {zs}scv and a feasible Steiner forest F' C E satisfying

Zce < 2225- (10)

ecF SCV

The next lemma proves that the objective function value of the (infeasible) dual solution
produced by the 7-AKR-GW algorithm is only a (v + 1)/2 factor larger than the (feasible)
dual solution produced by the AKR-GW algorithm.

Lemma 3.20 Let (G, D) be an instance of Steiner Forest, {ys}sec the feasible dual solution
produced by the AKR-GW algorithm, and {zs}scv the dual solution produced by the ~y-

AKR-GW algorithm. Then
v+1
SEFEALS S
Scv sec

Proof: We split the dual solution {zg}scy into two parts and bound each part separately. To
define this split, let 7; denote the merging time of s; and ¢; in the AKR-GW algorithm—the
earliest time that they are in the same cluster. If the dual variable zg is increased by the
v-AKR-GW algorithm at a time 7 less than T; for some demand s; or #; contained in S,
then this increase contributes to the part 2(51); otherwise it contributes to the part 2(52). Put
differently, the z(Sl) part of the dual variable is increased until the time at which all demands
in S become inactive in the AKR-GW algorithm; thereafter, the 2(52) part is increased. At
a given time 7, we accordingly classify an active cluster S of the -AKR-GW algorithm as
either good or bad.
The lemma will follow immediately from the following two inequalities:

Zzg) < Zys (11)

scv sec
and .
(2) T
DRI o 1)
scv sec

We can prove (11) by defining, for every time 7, an injective mapping from the good active
clusters of the 7-AKR-GW algorithm at time 7 to the active clusters of the AKR-GW
algorithm at time 7. Fix a time 7 and a good active cluster S of the y-AKR-GW algorithm
at time 7. By the definition of good, the cluster S contains a demand d € D that is in an
active cluster S of the AKR-GW algorithm at the time 7; map S to S. Lemma 3.12 implies
that this mapping sends each active cluster of the v-AKR-GW algorithm at time 7 to one
of its subsets. It is therefore injective, which completes the proof of (11).

To prove (12), order the demands according to increasing merging times in the AKR-GW
algorithm. For convenience, we insist that the two demands of a demand pair (s;, t;)—which

24

www.manaraa.com

have equal merging time—are consecutive in the ordering, with the source s; first. We break
other ties arbitrarily. For a demand d € D, we will call a cluster S of the AKR-GW or
v-AKR-GW algorithm a d-cluster if d is the last demand in S. For a demand d € D, let
Y, denote the sum of the dual variables yg for d-clusters S of the AKR-GW algorithm.
Similarly, let Z; denote the sum of the variables zé?) for bad d-clusters S of the 7-AKR-
GW algorithm. We call a demand pair (s;,t;) good if Z,, = Z;, = 0 and bad otherwise.
Let B C D denote the bad demand pairs. Note that > 5(Zs, + Zy,) = Y gcv zg) and

> den Yd = Dosec Us-
We will establish the following four inequalities for every bad demand pair (s;,t;) € B:

Z, = 0; (13)
Zy < (v— 1T (14)
Y, > T (15)
v, > T. (16)

These imply that

zs= > (Zat+Z)<(v-1) Tis'yTldeZDYd:”TlZys,

Na% (s4,t;)€B (si,ti)€B Sec

which will complete the proof of the lemma. N

Let (s;,t;) € B be a bad demand pair with Z; > 0 for d € {s;,t;}. Let S and S be
the clusters of the -AKR-GW and AKR-GW algorithms, respectively, that contain the
demand d at the merging time T}, after all cluster mergings at this time have been performed
by the algorithms. By the definition of T;, the cluster S contains both s; and ¢;, and s; and
t; were in separate clusters of the AKR-GW algorithm at all previous moments in time.
Also, by Lemma 3.12, S contains both s; and ¢; at time 7;. Since ¢; follows s; in the ordering
of demands, a cluster of the v-AKR-GW algorithm can only be an s;-cluster at time 7 if
7 < T;, and such clusters can only be good. This proves (13) and implies that d = ¢;.

Next, since Z;, > 0, the cluster S must be a t;-cluster at the time 7;. Since S is a subset
of S containing t;, it is also a t;-cluster at the time 7;. Moreover, every cluster of the AKR-
GW algorithm that contains a demand d € {s;,¢;} at a time 7 < T; is a d-cluster. Since
every such cluster is active in the AKR-GW algorithm, inequalities (15) and (16) follow.

Finally, we upper bound Z;,. By the definition of the -AKR-GW algorithm, a ¢;-cluster
can only be active at time 7 if 7 < - T;. On the other hand, such a cluster can only be bad
at time 7 if 7 > T;. Since only one cluster of the v-AKR-GW algorithm contains ¢; at a
given moment in time, Z;, < (v — 1)7;. This proves (14) and the lemma. B

Since the feasible dual solution constructed by the AKR-GW algorithm is a lower bound
on the value of a minimum-cost Steiner forest, Lemmas 3.19 and 3.20 imply the following
approximation ratio for the y-AKR-GW algorithm.

Theorem 3.21 For every v > 1, the v-AKR-GW algorithm is a (v + 1)-approzimation
algorithm for the Steiner Forest problem.

25

www.manaraa.com

Remark 3.22 A preliminary version of this work [34] contained a weaker version of The-
orem 3.21, which claimed an approximation ratio of 2y for the 7-AKR-GW algorithm.
Subsequent to [34], Becchetti et al. [12] proposed a different way to force the AKR-GW
algorithm to build additional edges. They proved that, for a fixed value of a parameter
7 > 2, their algorithm is a (y + 1)-approximation algorithm and admits [2/(y — 1)]-strict
cost shares. While the arguments in [12] do not seem to carry over to the v-AKR-GW al-
gorithm, this result nevertheless inspired us to revisit Theorem 3.21 and prove the improved
approximation ratio of v 4+ 1 with a new proof.

3.3.3 Strict Cost Shares for the v-AKR-GW Algorithm

Finally, we prove that the 7-AKR-GW algorithm is O(1)-strict provided v > 2. To define
our cost shares, we introduce some new terminology. A Steiner cut of a Steiner Forest
instance separates a demand d if it does not contain the other demand of d’s demand pair. A
Steiner cut is d-isolating if it separates d and no other demand. We then use the AKR-GW
algorithm to define our cost shares as follows.

Definition 3.23 (Isolated Cost Shares) Let Z = (G, D) be a Steiner Forest instance. Let
{ys}sec be the dual solution constructed by the AKR-GW algorithm for Z. For a demand
d € D, let C,4 denote the d-isolating Steiner cuts of Z. The isolated cost share x(Z,d) of a
demand d € Dis) ¢ . ys. The isolated cost share x(Z, (s;,t;)) of a demand pair (s;,t;) € D
18 X(Ia Si) + X(Ia tz)

In Definition 3.23, every Steiner cut can contribute to the cost share of at most one demand.
The sum of the isolated cost shares for a Steiner Forest instance is therefore at most the value
of the dual solution constructed by the AKR-GW algorithm, which in turn is at most the
value of a minimum-cost Steiner forest. Isolated cost shares are thus a cost-sharing method
in the sense of Definition 2.4. Isolated cost shares are also straightforward in the sense of
Example 3.10. Our goal is the following theorem.

Theorem 3.24 For every v > 2, the isolated cost shares are %—strict for the v-AKR-GW
algorithm.

Our proof of Theorem 3.24 requires a number of steps. We remind the reader that Sections 4
and 5 do not depend on any of the ideas in the following proof.

First, fix v > 2, a Steiner Forest instance Z = (G, D), and a demand pair (s;,t;) € D. Let
7 denote the Steiner Forest instance (G, D \ {(s;,%;)}). Let D and D =D\ {s;,t;} denote

the sets of demands of Z and Z, respectively. We need to show that

Carp(siti) < B-x(Z, (s, 1)), (17)

where x is the isolated cost share of (s;,¢;) in Z, F is the Steiner forest returned by the
execution v—AKR—GW(i), and = 2v/(y —1).

One main obstacle to proving Theorem 3.24 lies in relating the behavior of the AKR-GW
and 7-AKR-GW algorithms on the instances Z and Z, respectively. Despite the similarities

26

www.manaraa.com

between the two instances and the two algorithms, the executions AKR-GW (Z) and ~-
AKR—GW(i) could be dramatically different. Indeed, the difficulty of understanding the
sensitivity of primal-dual algorithms to small perturbations of the input is well known, and
has been studied in detail in other contexts by Garg [27] and Charikar and Guha [14]. We
next aim to partially avoid the detailed analyses of [14, 27] by transforming the instances Z
and Z. We emphasize that these transformations are only for our analysis, and in particular
for the proof of Theorem 3.24.

We first modify the execution of the 7v-AKR-GW algorithm on 7 so that it behaves
more similarly to AKR-GW(Z). Let T and T denote the vectors of demand pair merging
times in the executions AKR-GW(Z) and AKR—GW(f), respectively. By definition, ~-
AKR—GW@) uses the vector VT\ to classify demands and clusters as active or inactive. The
modified execution of fy—AKR—GW(f) instead uses the vector vT' (restricted to the demand
set D of f) for these classifications. The next several lemmas show that the inequality (17)
is only more difficult to show for the modified execution of 'y—AKR—GW(f) than for the
original execution. We begin with a monotonicity result, similar to Lemma 3.12, which states
that up to its merging time 7;, the addition of the demand pair (s;,t;) can only increase the
rate of growth of clusters in the AKR-GW algorithm.

Lemma 3.25 For every time ™ < T;, every cluster of AKR—GW(i’) at time T 1s a subset
of a cluster of AKR-GW (Z) at time .

Proof: The proof is nearly identical to that of Lemma 3.12, with AKR-GW|(Z) playing the
role of the v-AKR-GW algorithm in the latter proof. The only statement in the proof of
Lemma 3.12 which requires a new argument here is the following: if the vertex v is in the
active cluster S in AKR- GW(Z) at time 7 < T} and the cluster $ D S in AKR- GW(Z) at
time 7, then S is also active at this time. If S contains s; or ¢;, then S is active at time 7 by
the definition of the merging time 7;. Otherwise, assuming that the AKR-GW algorithm
is implemented with a consistent tie-breaking rule (see Subsection 3.2), the clusters that
do not contain s; or t; are always identical in the two executions. This fact follows from a
straightforward induction on the cluster mergings of the two executions. Thus if S contains
neither s; nor ¢;, then S = S and S is active at time 7, completing the proof. B

Lemma 3.25 implies that demand pairs that merge before time 7; in AKR—GW(f) can
only merge earlier in AKR-GW(Z).

Corollary 3.26 For every demand pair (s;,t;) € D\ {(s;,t;)} with T <T;,T;< T

Proof: By definition, s; and ¢; are in a common cluster of AKR—GW(I) at time T] If
T; < T;, then Lemma 3.25 implies that they are also in a common cluster at time 7j in
AKR-GW(Z), and hence 7; < 7;. B

Corollary 3.26 immediately implies that fj > min{7;,T;} for every demand pair (s;,t;) €
D\ {(s;,t;)}. It also leads to the next lemma, which states that clusters in the original
execution of y-AKR-GW (Z) are only larger than in its modified execution.

27

www.manaraa.com

Lemma 3.27 For every time 7 < 71;, every cluster of the modified execution of v-AKR-
GW (Z) at time T is a subset of a cluster of its original execution at time T.

Proof: As in the proof of Lemma 3.25, we only need to show that if a vertex v is in an active
cluster S at time 7 < 7T; in the modified execution and in a cluster S 2 S in the original
execution at time 7, then S is an active cluster. Since S is active, it contains a demand
d € {sj,t;} with 7 < ~Tj. Since 7 < - min{T;, T;}, Corollary 3.26 implies that d and hence
S are also active at time 7 in the original execution of v-AKR-GW (Z), which completes
the proof. W

A similar result holds for the demand partitions of the original and modified executions

of »-AKR-GW(Z).

Lemma 3.28 For every time 7 < 7T, every class of the demand partition of the modified
execution of -AKR-GW (Z) at time 7 is a subset of a class of the demand partition of its
original execution at time T.

Proof: We proceed by induction on the cluster mergings of the modified execution of -
AKR-GW(Z). The lemma clearly holds before any cluster mergings have occurred. For the
inductive step, consider a time 7 < 47; when the modified execution merges the clusters S,
and Sy. Since no partition classes are merged unless both clusters are active, we can assume
that S; and S, contain active demands at time 7. By Lemma 3.14, the active demands
of S; are contained in a single demand partition class C; at time 7 for j = 1,2. By the
inductive hypothesis, there are partition classes C4,Cy in the original execution at time 7
with C; C C; for j = 1,2. After S; and S, are merged, C; and Cy are merged into a single
class C; U Cy. Lemma 3.27 implies that after all cluster mergings of the original execution
at time 7 have occurred, there is a cluster S of the original execution that contains S; U Ss.
As in the proof of Lemma 3.27, since 7 < ~T;, Corollary 3.26 implies that every demand
that is active at time 7 in the modified execution is also active in_the original execution at
this time. The cluster S thus contains active demands from both Cl C () and C’Q C (5. By
Lemma 3.14, these demands must be in the same partition class after the cluster mergings
of the original execution of »-AKR-GW (Z) at time 7, and this partition class must contain
CiuCy D 51 U 52. The inductive step and the lemma are proved. B

Let P* denote the demand partition of the modified execution of 7—AKR—GW(f) at the
time 77;. Call the demands of a single class of the partition P* a P*-group. Recall that the
demand set D of Z is D \ {s;,t;}. In particular, neither s; nor ¢; lies in any P*-group.

Obtain the graph H from G by, for every P*-group, identifying the set of vertices hosting
demands from this group into a single vertex. Note that while H typically has a smaller
vertex set than G, it has the same edge set and edge costs as G. The next lemma relates
shortest s;-t; paths in H to those in G/F, where F is the Steiner forest returned by the
original execution of - AKR-GW (Z).

Lemma 3.29 Let F' be the Steiner forest returned by the original ezecution of v-AKR-
GW(Z). Then

ZG/F’(gza) <éﬂ(gza)a

28

www.manaraa.com

where Ly (s, t;) denotes the value of a minimum-cost s;-t; path in the graph H.

Proof: Lemmas 3.16 and 3.28 imply that the output of the original execution of y-AKR-
GW (Z) is a P*-connected Steiner forest F, containing a path between every two demands
that lie in a common P*-group. All demands of a P*-group therefore reside in a single node
of the contracted graph G/F. Every s;-t; path in H thus corresponds to one of no greater
length in G/F, which proves the lemma. B

Lemma 3.29 completes the first part of our proof of Theorem 3.24 and reduces the theorem
to showing that

£ (SZJ l) < ﬂ ((Siati))v (18)
where = 2v/(y —1).

We will prove (18) by, conceptually, rerunning the AKR-GW and 7-AKR-GW algo-
rithms on the instances Zy = (H, D) and Zy = (H, D\ {(s.1;)}), respectively. While these
two new executions behave similarly to their analogues with the original graph G—as we
show below—the inequality (18) is easier to establish for the instances Zy and Zy than for
T and 7.

As before, for the analysis we need to modify the executions AKR-GW(Zy) and y-AKR-
GW(fH) to use the merging times 7' of AKR-GW(Z). Precisely, we make the following
definitions, which are crucial for the following analysis.

e The modified execution of AKR-GW (Z;) deems a cluster S active at time 7 if and
only if S contains a demand s; or ¢; of D with 7 < T} (as opposed to if S separates
some demand pair of D).

e The modified execution of v—AKR—GW(fH) deems a cluster S active at time 7 if and
only if S contains a demand s; or ¢; of D with 7 < +T} (as opposed to using the
merging times of demand pairs in AKR-GW(Zg)).

Henceforth, we abuse notation and use AKR-GW (Zy) and -AKR-GW(Zy) to denote
these modified executions.

We first show that the isolated cost share x(Zg, (s;,1;)) accrued by (s;,%;) in AKR-
GW (Zy) is at most that in AKR-GW(Z). For this result, we need an auxiliary lemma. In
it, we say that a cluster S of H includes a cluster S of G if every vertex of S is mapped to a
vertex of S under the vertex identification map used to obtain H from G. In particular, if
S includes S, then all demands contained in S are also contained in S.

Lemma 3.30 For every time 7, every cluster of AKR-GW (Z) at time 7 is included in
some cluster of AKR-GW (Zy) at time .

The proof of Lemma 3.30 is almost identical to that of Lemma 3.12, and we omit further
details.

We now compare the original isolated cost share x(Z, (s;, ;) to its analogue in Zy. Recall
that demands are deemed active or inactive in AKR-GW (Zy) based on the merging times
T rather than on the separated demand pairs. We accordingly say that a cluster S of AKR-
GW (Zy) isolates the demand d at time 7 if d is the sole active demand in S at the time 7.

29

www.manaraa.com

The cost share x* of (s;,¢;) in Zy is then defined as the total amount of time that s; and ¢;
spend in isolating clusters in AKR-GW (Zy).

Lemma 3.31 Let x* denote the total amount of time that s; and t; spend in isolating clusters

in AKR-GW (Zy). Then
X' < x(T, (si: 1))

Proof: First, observe that by the definition of (the modified execution of) AKR-GW (Zy)
and the meeting time 7; in AKR-GW/(Z), a demand is active at time 7 in one execution if
and only if it is active at time 7 in the other execution. Next, suppose that d € {s;,#;} is
in an active, isolating cluster S in AKR-GW (Zy) at time 7. The cluster S that contains d
in AKR-GW/(Z) at time 7 must then also be active. Moreover, Lemma 3.30 implies that S
contains only fewer demands than S at time 7, and is thus also d-isolating. Since each of s;
and #; is only in an active, isolating cluster at time 7 in AKR-GW (Zy) when it is in such a
cluster at time 7 in AKR-GW/(Z), the isolating cost share of (s;,%;) in the former execution
is at most that in the latter. B

Next, by Lemma 3.30, s; and ¢; are first contained in the same cluster of AKR-GW (Zy)
at some time 7" < T;. Since clusters correspond to connected components of tight edges,
at time 77" there is an s;-t; path P of H that comprises only tight edges. Moreover, active
clusters of AKR-GW(Zg) can only intersect this path in a restricted way.

Lemma 3.32 If the cluster S is active at time 7 in AKR-GW (Zy), then the vertices that
lie in both S and P appear consecutively on P.

Proof: Suppose for contradiction that there are vertices u, v, w on P, with v between u and
w on P, such that u,w € S and v ¢ S. Since clusters correspond to connected components
of tight edges, there is a u-w path @)y of tight edges incident only to vertices in S at time
7 in AKR-GW (Zy). On the other hand, at time T there is a u-w path Q9 of tight edges
incident to the vertex v ¢ S the u-w subpath of P. By the time max{r, 7;}, all of the
edges in ()1 U @)y are tight in AKR-GW (Zy), at which point there is a cycle of tight edges.
Since this contradicts Lemma 3.17, the proof is complete. H

We will use the path P as a proxy for the shortest s;-t; path in H. This completes the
second part of our proof of Theorem 3.24, and reduces the theorem to showing that the
isolated cost share x* of (s;,%;) in AKR-GW (Zg) recovers a significant fraction of the cost
of the path P.

For the next part of the proof, we will need to make a careful comparison of the dual
variables in AKR-GW(Zy) and 7-AKR-GW (Zy). We call a moment 7 of time interesting
if two clusters merge in AKR-GW (Zy) at time 7, if two clusters merge in W—AKR—GW(fH)
at time y7, or if 7 equals the merging time 7; of some demand pair (s;, ;) in AKR-GW(Z).
An epoch of the former execution is an interval of time between consecutive interesting
moments. FEpochs of the latter execution are the same intervals, scaled by a factor of +.
There is thus a natural bijection between the jth epochs of the two algorithms (for all j),
which will play a central role in our argument. Additionally, the sets of active and inactive
clusters of AKR-GW (Zy) and v-AKR-GW (Zy) remain unchanged during an epoch.

30

www.manaraa.com

Our first lemma follows immediately from the definitions of (the modified executions of)

AKR-GW (Zy) and v-AKR-GW (Zp).

Lemma 3.33 For demand d € D\ {s;,t;} and time 7 > 0, d is active at time 7 in AKR-
GW (Zy) if and only if it is active in v-AKR-GW (Zy) at time .

Next, we show that the clusters of 7—AKR—GW(§H) can only have a very restricted form
before time «7}*. We again require an auxiliary monotonicity lemma, which relates clusters
of 7-AKR-GW (Zy) back to those of the modified execution of v-AKR-GW (Z) that was
used to define the graph H.

Lemma 3.34 Suppose the edge e is contained in a single cluster of 'y—AKR—GW(fH) at
the time 7. Then e is also contained in a single cluster of the modified execution of v-AKR-
GW (Z) at time .

Proof: The inductive proof is very similar to that of Lemma 3.12, and we omit most of the
details. The only additional fact required for the present proof is the following: if the lemma
holds at time 7 and a vertex v of H is in an active cluster at time 7 in v-AKR-GW (Zy),
then the corresponding vertex ¢ of G is in an active cluster of the modified execution of
v-AKR-GW(Z) at the time 7. We now prove this fact. Since v is in an active cluster S of
H at time 7 and clusters correspond to connected components of tight edges, there is path
of tight edges in S from v to a vertex w that contains a demand d, € D \ {s;,t;} that is
active at time 7. Since the lemma holds at time 7, there is a cluster S of G of the modified
execution of y-AKR-GW(Z) at this time that contains vertices © and @ that correspond
to v and w, respectively. By the definition of the graph H, there is at least one demand
dy € D\ {s;,t;} at the vertex w that is in d;’s P*-group. Let P denote the demand partition
of the modified execution of 7-AKR-GW (Z) at the time 7. (Recall that P* is defined as the
demand partition of this execution at the time 77;.) By Lemma 3.13, every demand in dy’s
P-group A is contained in S at time 7. We can finish the proof the lemma by showing that
some demand in the set A is active at time 7 in the modified execution of v-AKR-GW (Z).
Suppose for contradiction that all demands of A are inactive at the time 7. First, since
dy is active in v-AKR-GW(Zy) at time 7, it is also active in the modified execution of
v-AKR-GW(Z) at time 7 and thus d; ¢ A. Second, by the definition of the v-AKR-GW
algorithm, the P-group A will never merge with any other P-group after the time 7. These
two consequences contradic’g\the fact that d; and ds lie in the same P*-group of the modified
execution of y-AKR-GW (Z) at the time T, completing the proof of the lemma. B

Now we prove that the clusters of *y—AKR—GW(fH) at a time 7 < 41" are simple.

Lemma 3.35 Suppose S is an active cluster of v—AKR—GW(i'H) at the time T < ~T}.
Then S contains active demands from only one P*-group.

Proof: Suppose for contradiction that S contains active demands d;, dy from different P*-
groups. Since S corresponds to a connected component of tight edges, S contains an d-ds
path. By Lemma 3.34, this path (and hence d; and ds) is contained in a single cluster of the
modified execution of *y—AKR—GW(f) at time 7. By the definition of the modified executions

31

www.manaraa.com

of *y—AKR—GW(f) and 7—AKR—GW(§:’H), dy and dy are also active in the modified execution
of - AKR-GW(Z) at this time. But then Lemma 3.14 implies that d; and dy are in the
same P*-group, a contradiction. l

We next show that the active clusters of AKR-GW (Zy) are almost as simple before time
T. The following auxiliary lemma is where we use the standing assumption that v > 2. It
roughly states that the missing cluster growth due to the absence of the demands s; and ¢,
from the instance Zy can be made up for by growing the other demands for twice as long.

Lemma 3.36 Suppose the demands dy € {s;,t;} and dy € D\ {s;,t;} are active and in the
same cluster of AKR-GW (Zy) at the time 7 < T}. Then dy and dy are in the same cluster

of v-AKR-GW (Zy;) at the time 27.

Proof: By symmetry, we can assume that d; = s;. Since clusters correspond to connected
components of tight edges, there is an s;-ds path) of tight edges at time 7 in AKR-
GW (Zy). Let {ys}scv denote the dual variables at this time; thus > gy, .55 Ys = ce for

all e € Q. We claim that the edges of () are nearly tight at time 7 in V—AKR—GW@H) in

the following sense:
> D> s> (19)

e€EQ SCV :ecd(S)

where ¢(Q) is the cost), ¢ of @ and {zg}scv are the dual variables in v-AKR-GW (Zy)

at time 7.

We first claim that if S is subset of the vertex set of H with t; € S and PN d(S) # 0,
then yg = 0. Indeed, if ys > 0 for such a cluster S, then S is active at or before time 7,
which implies that by time 7 there is a set of tight edges from ¢; to (). But then s; and t; are
connected by a path of tight edges at time 7 in AKR-GW (Zy) and are hence in the same
cluster, which contradicts the assumption that 7 < T7".

Next consider the clusters that contain neither s; nor ¢;. As in the proof of Lemma 3.25, a
straightforward induction shows that the sets of such clusters are identical in AKR-GW (Zp)
and *y—AKR—GW(fH) at all times. Thus zg = yg for all such clusters S. Lastly, the sum of
the dual variables yg of clusters S that contain s; is exactly 7, and Lemma 3.32 implies that
each of such cluster with yg > 0 only contributes to the packing constraint of a single edge
of P. Inequality (19) follows.

Finally, in 7—AKR—GW(§H), the cluster containing dy will intersect the path) until s;
and dy are in the same cluster or until d becomes inactive. Since 7y > 2 and dy is active
at time 7 in AKR-GW (Zy), ds is active at time 27 in v-AKR-GW (Zy). Inequality (19)
implies that dy’s (active) cluster intersects P for at most 7 time units beyond the time 7.
Thus s; and dy must be in the same cluster by time 27 in v-AKR-GW(Zy;). B

eeqQ

Now we use Lemma 3.36 to limit the complexity of active clusters of AKR-GW (Zy).

Lemma 3.37 Suppose S is an active cluster of AKR-GW (Zy) at the time 7 < TF. Then
S contains active demands from only one P*-group, and does not contain both s; and t;.

32

www.manaraa.com

Proof: The cluster S does not contain both s; and ¢; by the definition of the merging
time 7}*. Suppose for contradiction that S contains active demands from distinct P*-groups.
If S contains neither s; nor ¢; then, as in the previous proof, S is also a cluster of y»-AKR-
GW(fH) at the time 7. This contradicts Lemma 3.35. Finally, suppose that S contains
demands d;, dy from distinct P*-groups in addition to either s; or ¢; (s;, say). Lemma 3.36
implies that s;, d;, and dy are in the same cluster of ’y—AKR,—GW(fH) at the time 27. Since
v > 2, dy and d are active at this time in 'y—AKR—GW(fH), which contradicts Lemma 3.35.
[|

Lemma 3.37 allows us to classify the active clusters of AKR-GW (Zy) at a time 7 < T}
into three categories. Recall that a cluster S of AKR-GW(Zy) isolates the demand d € D
at time 7 if d is the sole active demand in S at the time 7.

e An active cluster S of AKR-GW (Zy) at a time 7 < T/ is isolating if it is s;- or
t;-isolating.

e Such a cluster S is shared if it contains an active demand from D \ {s;,#;} and either
s; or t;.

e Such a cluster S is independent if it contains neither s; nor t;.

Suppose that S is in an active cluster of AKR-GW (Zy) during an epoch preceding the time
Tr. If S is shared or independent, then S contains an active demand d € D \ {s;,t;}, and
so by Lemma 3.33 there is an active cluster that contains d in the corresponding epoch of
7-AKR-GW(Zy). If S is isolating, then there is no such corresponding cluster, as s; and ¢;
are not demands in fH

We can now describe our high-level plan for the final part of our proof of Theorem 3.24.
Recall that P denotes the s;-t; path of tight edges at time 7;" in AKR-GW(Zy). For a
cluster S, we will say that S crosses P k times if |P N §(S)| = k. If the cluster S crosses
P a total of k times, then it contributes a total of kyg to the left-hand sides of the packing
constraints ngv;eea(s) ys < ¢, for the edges e of P. Since all edges of P are eventually
tight, the sum of all such contributions is precisely ¢(P).

Our key claim will be that for a “typical” shared or independent cluster that is active
in a given epoch of AKR-GW(Zy), there is a corresponding cluster in the same epoch
of 7-AKR-GW (Zy) that crosses P the same number of times. Since epochs in the latter
execution are 7y times as long as those in the former one, the contribution of these clusters
to the packing constraints of the edges of P is times as large as in the former execution.
Since the sum of all such contributions is at most ¢(P), only a limited number of the active
clusters that cross P in AKR-GW(Zy) can be shared or independent—the rest must be
isolated and thus contribute to the isolated cost share of (s;, ;).

Now we supply the details. We first make precise the correspondence between active
clusters in the two executions. We define an injective map A; for each epoch j that precedes
the time 7. Fix such an epoch j. Let S be a shared or independent active cluster of

this epoch in AKR-GW (Zy). Since S is not isolated, we can choose (arbitrarily) an active
demand d € D\ {s;,;} that liesin S. Let S be the cluster containing d in the jth epoch of

33

www.manaraa.com

7—AKR—GW(§:’H). Set A;(S) to S. Note that A; is defined only on the active shared and
independent clusters of the jth epoch. Next we prove several basic facts about these maps.

Lemma 3.38 Fiz an epoch j of AKR-GW (Zy) that concludes at or before the time T} .
The map A\; satisfies the following properties.

(a) A; is injective.
(b) Aj maps active clusters to active clusters.

(c) If S is an active independent cluster in the jth epoch of AKR-GW (Zy), then S C
A;(S).

(d) If S is an active shared cluster containing d € {s;,t;} in the jth epoch of AKR-
GW (Zy), then A;(S) also contains d.

Proof: Part (a) follows from the facts that each active cluster in the jth epoch of v-AKR-
GW (Zy) only contains demands from one P*-group (Lemma 3.35), and that each P*-group
of demands is contained in a unique cluster of the jth epoch of AKR-GW (Zy). Part (b)
follows immediately from Lemma 3.33. For part (c), recall from the proof of Lemma 3.36
that since S is an independent cluster at time 7 in AKR-GW (Zg), it is also a cluster at time

7 in 7—AKR—GW(iH). Since clusters only grow with time, in the jth epoch of v-AKR-

GW(fH) there is a cluster S that contains S, and A; will map S to S. Finally, part (d)
follows directly from Lemma 3.36 and our standing assumption that v > 2. W

Recall that the map A; is intended to set up a correspondence between clusters in the

jth epoch of AKR-GW (Zy) that cross P and clusters in the jth epoch of 7—AKR—GW(iH)
that cross P. We next seek to prove that each map A; approximately preserves the number
of crossings of P. We first note the following corollary of Lemma 3.32, which limits the
number of times that active clusters of AKR-GW (Zy) can cross the s;-t; path P.

Corollary 3.39 Let S be an active cluster of AKR-GW (Zy).
(a) If S is isolating or shared, then S crosses P at most once.
(b) If S is independent, then S crosses P at most twice.

The second consequence of Lemma 3.32 is that the image A;(.S) of a shared or independent
active cluster S crosses P as many times as S does, unless either s; or ¢; lies outside S and

inside A;(95).

Lemma 3.40 Let S be an active shared or independent cluster of AKR-GW (Zy) in an
epoch j that ends at or before time T7".

(a) If A;(S) crosses P fewer times than S, then A;j(S)\ S contains either s; ort;.

(b) If Aj(S) crosses P two fewer times than S, then A;(S)\ S contains both s; and t.

34

www.manaraa.com

Proof: For part (b), Corollary 3.39 implies that we can assume that S is independent and
crosses P twice, while A;(S) does not cross P. By Lemma 3.38(c), A;(S) D S. Since A,;(S)
does not cross S, it must contain P, and in particular both s; and ¢;. A similar argument
also proves (a) for independent clusters.

Finally, suppose S is shared. By symmetry, we can assume that S contains s;. By
Corollary 3.39(a), we can assume that S crosses P once while A;(S) does not cross P. By
Lemma 3.38(d), A;(S) also contains s;. Thus if A;(S) does not cross P, it must contain P
and in particular ¢;. The proof is complete. B

Next we bound the number of times that s; or #; can appear in a cluster A;(S) but not
in the preimage S.

Lemma 3.41 Let S be an active cluster of AKR-GW (Zy) in an epoch j that ends at or
before time T} . Suppose the demand d € {s;,t;} lies in A;(S) but not S. Then d is isolated
in the jth epoch of AKR-GW (Zy).

Proof: We proceed by contradiction. Suppose that d is in a shared cluster S’ in the jth epoch
of AKR-GW (Zy), with S” containing a demand d' € D\ {s;,%;}. Since this epoch precedes
T;, d and hence S" are active during this epoch. By Lemma 3.38(d), A;(S") contains both d
and d'. By Lemma 3.38(a), A, is injective and hence A;(S) # A;(S’). But both A;(S) and
A;(S") contain d, which contradicts the fact that distinct clusters in a common epoch are
disjoint.

With all of the preliminary results in place, we are finally prepared to finish the proof of
Theorem 3.24. The proof will closely follow the outline described following Lemma 3.37.

Proof of Theorem 3.24: We adopt all of the notation used above. Lemmas 3.29 and 3.31
reduce inequality (17), and hence the proof of the theorem, to showing that

2y
P)< —— . y* 20
(P < (20)
where ¢(P) is the cost of the s;-t; path P in H, and x* is the total amount of time that s;
and ¢; spend in isolating clusters in AKR-GW (Zy).
Let C denote the set of possible clusters of Zg—the sets of vertices that contain at least

one demand of D. Similarly let C denote the possible clusters of Zy. For a cluster S, let yé)

and zg) denote the increment in the dual variables yg and zg in the jth epochs of AKR-
GW(Zy) and 7-AKR-GW (Zy), respectively. Note that such an increment is positive in an
epoch if and only if the corresponding cluster is active during the epoch.

For a cluster S, let x(S) denote the number of times that S crosses P. Let epoch p of
AKR—GW(?H) end at time 7;*. Since P comprises only tight edges at time 7;" in AKR-

GW (Zn),

SNy k() = ¢(P). (21)

j=1 SeC

SN K(S) < o(P). (22)

=1 seC

Also,

35

www.manaraa.com

Let Cj’ C C denote the clusters that are s;- or ¢;-isolating during the jth epoch of AKR-
GW (Zy). For a non-isolating cluster S ¢ C; that is active in an epoch j < p of AKR-
GW(Zg), let pj(S) = max{0, k(S) — k(A;(S))} denote the number of “missing crossings of
P” from A;(S), relative to S. Since epochs in v-AKR-GW (Zy) are 7 times as long as in
AKR-GW(Zg), inequality (22) and Lemma 3.38(a) and (b) imply that

SNoST vy [6(8) - ()] < e(P). (23)

=1 I
j=1 s¢c!

Next, we can use Lemma 3.41 to associate each active, non-isolating cluster S ¢ Cj’ of the
jth epoch of AKR-GW (Zy) with p;(S) isolating clusters from the same epoch. Moreover,
the injectivity of A; (Lemma 3.38(a)) implies that no such isolating cluster is mapped to
more than once: for d € {s;,t;}, an isolating d-cluster in the jth epoch of AKR-GW(Zy)
can only be mapped to by a cluster S for which d € A;(S). We thus have

v (9 <Yy

I I
S¢C; sec]

for each epoch j < p. Summing over all such epochs and using the definition of the isolated

Yo wi(8) < x- (24)

=1 I
j=1 s¢c!

Combining (23) and (24) then gives

cost share x*, we have

SO sy < e (25)

- Y
=1 I
j=1 s¢c!

Subtracting inequality (25) from equation (21) gives

S w(s) = ep) - P (26)

Jj=1 Secjf v

Since £(S) < 1 for all isolating clusters S € C]-’ in all epochs j < p (Corollary 3.39(a)), the
left-hand side of (26) is a lower bound on x*. Using this fact and rearranging we obtain

X ZWC(P)J

which completes the proof. l

Theorems 2.10, 3.21, and 3.24 imply that for every v > 2, the algorithm SAMPLE-
AUGMENT, using the algorithm y-AKR-GW as its Steiner Forest subroutine, is a constant-
factor approximation algorithm for MRoB.

36

www.manaraa.com

Theorem 3.42 Algorithm SAMPLE-AUGMENT, with the subproblem step implemented with
the v-AKR-GW algorithm with v > 2, is a [y + 1+ 2v/(y — 1)|-approzimation algorithm
for the MRoB problem.

Choosing v = 1 + /2 we obtain an approximation ratio of 4 + 2v/2 ~ 6.83.

Corollary 3.43 Algorithm SAMPLE-AUGMENT, with the subproblem step implemented with
the (1 +v/2)-AKR-GW algorithm, is a (4 + 2v/2)-approzimation algorithm for the MRoB
problem.

Prior to our work, the best approximation ratio known for the MRoB problem was more than
one thousand [50]. In addition, the algorithm in [50] is fairly complicated. We emphasize
that while our proof of Theorem 3.42 is involved, our MRoB algorithm is relatively simple,
with complexity comparable to that of the AKR-GW algorithm.

Remark 3.44 In a preliminary version of this work [34], we presented a 12-approximation
algorithm for MRoB. The improvement in Theorem 3.42 above comes from two sources.
First, the preliminary version [34] contained a weaker version of Lemma 3.41, which led to
a looser analysis in the proof of Theorem 3.42. Second, as discussed in Remark 3.22, the
preliminary version [34] also contained a weaker version of Theorem 3.21. We discovered
the first improvement soon after the publication of [34]; this optimization alone gives an
8-approximation algorithm for MRoB. As noted in Remark 3.22, we discovered the second
refinement of our analysis only after an analogous improvement was presented by Becchetti
et al. [12] for a different algorithm. Our approximation ratio of 4 + 2v/2 in Theorem 3.42
matches that of the algorithm in [12].

3.4 Multicast Rent-or-Buy

In this subsection we extend our algorithm and analysis for the MRoB problem to the more
general MuRoB problem, where there are arbitrary demand groups in place of demand pairs.
Formally, an instance of MuRoB is given by the usual graph G = (V, E) with edge costs ¢, a
parameter M, and a set D = {Ds,..., Dy} of demand groups. Each demand group D; is an
arbitrary set of two or more demands and has a corresponding weight w;. A feasible solution
to a MuRoB instance buys and rents capacity on edges as usual, and also specifies a tree
A; for each demand group D; that spans all of the demands of D;. The capacity on each
edge e must be at least the weight Zi:eeAi w; of the trees that include it. In other words,
the capacity installed must be sufficient for simultaneous “multicast” communication within
each demand group.

3.4.1 Extending the SAMPLE-AUGMENT and 7-AKR-GW Algorithms

Most of the algorithmic and analytic techniques of Subsection 3.3 carry over to the MuRoB
problem, but a few additional ideas are needed. The high-level approach of the SAMPLE-
AUGMENT algorithm also applies to the MuRoB problem: sample each demand group D;
independently with probability min{w;/M,1}, buy infinite capacity on edges to connect
demand groups in the randomly sampled subproblem, and greedily rent capacity for the

37

www.manaraa.com

remaining demand groups. There are clearly no subtleties in implementing the sampling
step. The problem that arises in the subproblem step, which we will call the Generalized
Steiner Tree (GST) problem [1, 29], seems more general than the Steiner Forest problem,
since the connectivity requirements now involve demand groups rather than demand pairs.
An instance of GST can be converted into an equivalent instance of Steiner Forest, however,
for example by replacing each demand group D; with a set of demand pairs, one for each
unordered pair of demands of D;. Thus every a-approximation algorithm for Steiner Forest
can be converted into an a-approximation algorithm for GST. Alternatively, the AKR-GW
and v-AKR-GW algorithms are easily modified to directly approximate the GST problem.
First, modify the AKR-GW algorithm so that it deems a cluster S active whenever there
is a demand group D; for which S contains a non-empty and strict subset of the demands
of D;. The merging time T; of a demand group D; is then the earliest time at which all
demands of D; lie in a common cluster. The v-AKR-GW algorithm is then defined for the
GST problem in the obvious way.

In either case, the following analogue of Theorem 3.21 holds for the (suitably modified)
v-AKR-GW algorithm.

Theorem 3.45 For every v > 1, the v-AKR-GW algorithm is a (v + 1)-approzimation
algorithm for the GST problem.

3.4.2 Strict Cost Shares for the v-AKR-GW Algorithm: The Multicast Case

We next discuss strict cost-sharing methods for GST algorithms and for the v-AKR-GW
algorithm in particular. Extending the definition of a strict cost-sharing method is straight-
forward. By a GST cost-sharing method we mean a function y that assigns a non-negative
cost share x(Z, D;) to each demand group D; of an instance Z of GST, such that the sum of
the cost shares is at most the cost of an optimal solution to Z.

Definition 3.46 Let A be a deterministic algorithm for the GST problem. A GST cost-
sharing method x is §-strict for A if for all instances Z = (G, D) of GST and for all demand
groups D; € D,

lep(D;) < B-x(Z,D;),

where F' is the solution returned for the instance (G,D \ {D;}) by the algorithm A, and
(g r(D;) denotes the value of a minimum-cost tree in G/F that spans all of the demands
of Dz

An algorithm for the GST problem is then §-strict if it admits some [-strict cost-sharing
method. One new complication is that the value {q,p(D;), which represents the cheapest
way of renting capacity between the demands of D; given that infinite capacity has already
been bought on the edges of F', is NP-hard to compute for general demands groups. We
discuss this issue further at the end of the section.

We noted above that an a-approximation algorithm for Steiner Forest naturally induces
an a-approximation algorithm for GST. Unfortunately, a strictness guarantee (in the sense
of Definition 2.5) for a Steiner Forest approximation algorithm does not necessarily carry
over to a strictness guarantee (in the sense of Definition 3.46) for the corresponding GST

38

www.manaraa.com

approximation algorithm. In particular, we must reprove a strictness guarantee for the
v-AKR-GW algorithm for the GST problem.
We next outline how to modify the proof of Theorem 3.24 to show the following result.

Theorem 3.47 For every v > 2, the v-AKR-GW algorithm for the GST problem is 4:’2—
v
strict.

As in the proof of Theorem 3.24, we will show that the isolated cost-sharing method
(Definition 3.23) is 4vy/(y — 2)-strict for the v-AKR-GW algorithm. In the context of the
GST problem, a cluster S is called D;-separating for a demand group D; if S contains a
non-empty strict subset of the demands of D;, and is D;-isolating if it separates D; and
no other demand group. The isolated cost share x(Z, D;) of a demand group D; of a GST
instance Z is then defined as the sum of the dual variables constructed by the AKR-GW
algorithm for 7 that correspond to D;-isolating clusters. R

Fix an instance Z = (G, D) of GST and a demand pair D; € D. Let Z denote the GST
instance (G,D \ {D;}). The first part of the proof of Theorem 3.47 is identical to that of
Theorem 3.24. In particular, we define T; to be the merging time of the demand group
D; in AKR-GW(Z), the modified execution of y-AKR-GW (Z) as the execution that uses
the merging times T of AKR-GW(Z) (rather than of AKR-GW(Z)) to classify clusters
as active or inactive, P* to be the demand partition of this modified execution at the time
~T;, and H as the graph obtained from G by identifying vertices that host demands from a
common P*-group. Following the proofs of Lemmas 3.25-3.29 establishes the following.

Lemma 3.48 Let F be the solution returned by (the original ezecution of) v-AKR-GW (Z).
Then

layr(Di) < Ly (D;),

where Lq p(D;) and g (D;) denote the values of minimum-cost trees spanning all demands
of D; in G/F and H, respectively.

The second part of the proof of Theorem 3.47 is also similar to that of Theorem 3.24.
Define the GST instances Zy = (H, D) and Zy = (H, D\{D;}), and the (modified) executions
AKR-GW (Zy) and v-AKR-GW (Zy), which use the merging times 7' in AKR-GW(Z) to
classify clusters as active or inactive.

We next define the isolated cost share of D; in (the modified execution of) AKR-
GW (Zy). In AKR-GW(Zy), a demand of D; is active at the time 7 if and only if 7 < T;.
We call a cluster S of AKR-GW (Zy) D;-isolating at the time 7 < T; if S contains at least
one (active) demand of D; and no active demand of another demand group. We define the
isolated cost share x* of D; in AKR-GW(Zy) as the sum of the dual variable increases
in AKR-GW(Zy) that correspond to Dj-isolating clusters. More formally, call a time 7
interesting in AKR-GW (Zy) if 7 = 0, if two clusters merge at time 7, or if some cluster
becomes inactive at time 7. For future convenience, we also call a time 7 interesting if two
clusters merge in y-AKR-GW (Zy) at the time y7. As usual, an epoch is an interval between
consecutive interesting moments of time and the set of active clusters remains unchanged
within an epoch. Let C denote the clusters of AKR-GW(Zy) that are Dj-isolating in an
epoch j that ends at or before the time 7;. Let yg) denote the increment in the dual variables

39

www.manaraa.com

ys in the jth epoch of AKR-GW (Zy). The isolated cost share x* of D; in AKR-GW (Zy)

is formally defined as
p
X =003y, (27)

i=1 sec!

where p is the number of epochs that precede the time T;. Following the proofs of Lem-
mas 3.30 and 3.31 gives the next lemma.

Lemma 3.49 The isolated cost share x* of D; in AKR-GW (Zy) satisfies
X" < x(T, Dy).

Lemmas 3.48 and 3.49 reduce the proof of Theorem 3.47 to showing that

4
v—2
The analogue of Lemma 3.30 implies that by some time 7" < T, all of the demands of D,
lie in a common cluster of AKR-GW (Zy). Since the set of tight edges in AKR-GW (Zy)

is acyclic (see Lemma 3.17), there is a unique minimal tree A; of tight edges that spans the
demands of D; at the time 7} in AKR-GW (Zy); we use A; as a proxy for (g (D;).

)

We now arrive at the point at which the proofs of Theorems 3.24 and 3.47 diverge in
some small but important ways. First, the analogue of Lemma 3.32 is the following.

Lemma 3.50 If the cluster S is active at time 7 in AKR-GW (Zy), then the vertices that
lie in both S and A; form a subtree of A;.

While Lemmas 3.33-3.35 carry over without change to the present setting, the proof of
Lemma 3.36 only gives the following.

Lemma 3.51 Suppose at the time 7 < T} a cluster of AKR-GW (Zy) contains exactly one

7
demand dy from D; as well as an active demand dy not in D;. Then dy and dy are in the

same cluster of v~-AKR-GW () at the time 27.

We will use the following corollary of Lemma 3.51.

Corollary 3.52 Suppose the demands dy € D; and dy ¢ D; are active and in the same
cluster of AKR-GW (Zy) at the time 7 < TF. Then the cluster of -AKR-GW (Zy) that

contains do at the time 27 also contains at least one demand of D;.

Proof: Lemma 3.51 implies that the cluster of 'y—AKR—GW(fH) that contains dy at the time
27 also contains the first demand of D; to share a cluster of AKR-GW (Zy) with dy. B

While Lemma 3.37 does not completely carry over to the present setting—in particular, an
active cluster of AKR-GW (Zy) might contain active demands from distinct P*-groups we
can still classify the active clusters of AKR-GW (Zy) as (D;-)isolating, shared, or inde-
pendent. We can also define the maps A; for each epoch j preceding T} for active shared
and independent clusters as in Subsection 3.3. Recall that for such a cluster S in a such

40

www.manaraa.com

an epoch j, we pick (arbitrarily) a demand d that lies in S but not D; and set A; to the
cluster that contains d in the jth epoch of V—AKR—GW@H). (Recall also that epochs of
v-AKR-GW (Z) are those of AKR-GW (Zy), scaled by a ~ factor.) Corollary 3.52 and
the proof of Lemma 3.38 then yield the following.

Lemma 3.53 Fiz an epoch j of AKR-GW (Zy) that concludes at or before the time T} .
The map A; satisfies the following properties.

(a) A, is injective.
(b) Aj maps active clusters to active clusters.

(¢) If S is an active independent cluster in the jth epoch of AKR-GW (Zy), then S C
A4(S)-

(d) If S is an active shared cluster in the jth epoch of AKR-GW (Zy), then A;(S) contains
at least one demand of D;.

The main consequence of our concessions in the above lemmas is that, in the language of
the proof of Theorem 3.24, we can no longer precisely control the number 4;(S) of “missing
crossings” of A; by A;(S), relative to those by a cluster S. In particular, we cannot establish
analogues of Corollary 3.39 and Lemma 3.40 in the GST setting, which in turn will lead to a
degradation in our strictness bound. Before completing the proof of Theorem 3.47 we state
a final lemma, which follows from the argument in the proof of Lemma 3.41.

Lemma 3.54 Let S be an active cluster of AKR-GW (Zy) in an epoch j that ends at or
before time T}. Suppose Aj(S) contains all of the demands of D;. Then every demand of D;
that lies in A;(S) but not S is in an isolating cluster in the jth epoch of AKR-GW (Zy).

We now complete the proof of Theorem 3.47. As foreshadowed above, it differs from
the proof of Theorem 3.24 primarily in that we bound the impact of missing crossings in a
relatively crude way.

Proof of Theorem 3.47: Our goal is to show that
4y

A) < — 28

() < 5 x (28)

where ¢(A4;) is the cost of the tree A; and x* is defined as in (27). For a cluster S, let x(S5)

denote the number of edges in both A; and §(S). Let C and C denote the possible clusters

S of Iy and ig, respectively, with x(S) > 0. For a cluster S, let yg) and zg) denote the
increment in the dual variables ygs and zg in the jth epochs of AKR-GW (Zy) and 7-AKR-

GW(fH), respectively. Let epoch p end at time 7. First, the following crude bound holds

(cf. (22)): p
SN A < (4. (29)

=1 seC

41

www.manaraa.com

As in (21), since A; comprises only tight edges at time T in AKR-GW(Zg),

)

YD udw(S) = (4. (30)

j=1 SeC

Next, we claim that for every epoch j < p, ignoring the number of crossings in (30)
neglects at most half of the sum of the dual increments:

= %nyqj) - K(S).

Sec Sec

To prove this claim, fix an epoch j < p and consider the set C; C C of clusters that are
active in this epoch. Note that yg) is the same—namely, the length of the jth epoch—for
all clusters S € C;. The claim is therefore equivalent to the assertion that the average value
of k(S) among clusters in C; is at most 2. By Lemma 3.50, each such cluster S intersects A;
in a subtree of A;, with distinct clusters corresponding to vertex-disjoint subtrees. Obtain
a new tree X from A; by contracting each of these disjoint subtrees. Call a vertex = of X
contracted if it corresponds to a cluster S of C; and original otherwise. If z is a contracted
vertex corresponding to the cluster S, then the degree of x in X is precisely x(S). Since X is
a tree, the average degree of a vertex of X is at most 2. Since A; is a minimal tree that spans
the vertices of D;, every leaf of A; is a demand of D;. Since every such demand lies in an
active cluster of AKR-GW (Zg) in the epoch j < p, every leaf of X is a contracted vertex.
Since original vertices of X all have degree at least 2, the average degree of a contracted
vertex of X is at most 2, which completes the proof of the claim.
Combining the claim with (30) yields

iZyg) > C(fi); (31)

j=1 SeC

the symmetry between (29) and (31) now allows us to proceed similarly to the proof of
Theorem 3.24. Let Cj[C C denote the D;-isolating clusters during the jth epoch of AKR-
GW (Zy). For a shared or independent cluster S € C; \ C] that is active in an epoch j < p
of AKR-GW(Zy), let 11;(S) equal 1 if A;(S) ¢ C (ie., if k(A;(S)) = 0) and 0 otherwise.
Crucially, parts (c) and (d) of Lemma 3.53 imply that p,;(S) = 1 for such a cluster only if
A;(S) contains all of the demands of D;.
Since epochs in ’y—AKR,—GW(fH) are v times as long as in AKR-GW (Zy), inequal-
ity (29) and Lemma 3.53(a) and (b) imply that
p .
D2 v [(S)] < (4, (32)

=1 I
j=1 s¢c!

Applying Lemma 3.54, the injectivity of A; (Lemma 3.53(a)), and the definition (27) of x*
then gives

i >y < i) | (33)

www.manaraa.com

Subtracting inequality (33) from inequality (31) gives

recalling the definition (27) of x* and rearranging establishes (28) and completes the proof.
|

3.4.3 A 12.66-Approximation Algorithm for MuRoB

Finally, we combine Theorems 3.45 and 3.47 to obtain an approximation algorithm for the
MuRoB problem. Naively, there is a new source of error in the SAMPLE- AUGMENT algorithm
for the MuRoB problem: greedily renting capacity in the augmentation step now corresponds
to solving the NP-hard Steiner Tree problem, and therefore requires an approximation al-
gorithm. The obvious analogue of Theorem 2.10 for the MuRoB problem is: if a [S-strict
a-approximation algorithm for GST is used in the subproblem step of SAMPLE-AUGMENT,
and a vy-approximation algorithm for Steiner Tree is used in the augmentation step, then
SAMPLE-AUGMENT is a randomized (« + [- 7)-approximation algorithm for MuRoB.

Tracing through the proof of Theorem 3.47, however, we see that it can be used to
give a polynomial-time implementation of the augmentation step of the SAMPLE-AUGMENT
algorithm. Since the strictness guarantee of Theorem 3.47 applies directly to this particular
implementation, there is no further loss in approximation ratio and the bound of oo+ 3 from
Theorem 2.10 applies. Precisely, by implementing the subproblem and augmentation steps
of the SAMPLE-AUGMENT algorithm with the y-AKR-GW subroutine and the subroutine
implicit in the corresponding strictness proof (Theorem 3.47), respectively, the following
bound applies to the SAMPLE-AUGMENT algorithm for the MuRoB problem.

Theorem 3.55 For every v > 2, there is a randomized [y + 1 4 4v/(y — 2)]-approzimation
algorithm for the MuRoB problem.

Choosing v = 2 + 2v/2, we obtain an approximation ratio of 7 + 4v/2 ~ 12.66.

4 Virtual Private Network Design

In this section and the next, we show that strict cost-sharing methods lead to improved
approximation algorithms for two problems to which our analysis framework does not directly
apply. In this section, we build on our algorithm and analysis for the SSRoB problem and
give a simple 5.55-approximation algorithm for the VPND problem. We study the SSBaB
problem in the next section.

4.1 The VPND Algorithm

Recall from Subsection 1.1 that in an instance of the VPND problem (Problem 1.2) we are
given thresholds b;, (j) and b,y (7) on the amount of traffic that enters and leaves each demand

43

www.manaraa.com

Input: an VPND instance (G, D, b).
Assumptions: each demand j € D is either a sender or a receiver; there are more receivers
than senders.

1. (Sampling step) Pick a sender § uniformly at random.

2. (Subproblem step) Use the algorithm SAMPLE-AUGMENT to compute a feasible solution
to the SSRoB instance (G, D, 1, M), where D is the set of all pairs of the form (r,) for
a receiver r, 1 the vector of unit weights, and M is the number of senders. Let F' denote
the edges bought by the algorithm. For every edge e € F, set u, = M; for every other
edge e, set u, equal to the amount of capacity rented for e by the SAMPLE-AUGMENT
algorithm.

3. (Augmentation step) Greedily and independently reserve one unit of capacity from each
sender other than s to F'.

Figure 5: The algorithm VPN-SAMPLE-AUGMENT.

j € D CV of anetwork G = (V, E) with edge costs c.. The objective is to design a network
will sufficient capacity for every traffic pattern that respects these upper bounds. Formally,
a traffic pattern is specified by a D x D matrix of nonnegative real numbers, with entry f;;
denoting the amount of traffic sent from demand 7 to demand j. A traffic matrix is valid
if for every demand j, the amount of traffic). f;; incoming to j is at most b;,(j) and the
amount Y . f;; of outgoing traffic is at most by, (j). We assume that all of these thresholds
are rational numbers. By scaling both these thresholds and the edge costs of G, we can then
assume, without loss of generality, that these thresholds are integral.

A feasible solution to a VPND instance reserves capacity u. on each edge e of the graph
G, and selects paths Pj; between each ordered pair 7,7 € D of demands so that all valid
traffic matrices can be routed using these paths without violating the reserved capacities.
The cost of a solution is), c.u, and we seek a solution of minimum cost.

To simplify our exposition, we assume for most of this section that each demand j is
a either a sender (with b;,(j) = 0 and by, (j) = 1) or a receiver (with b;,(j) = 1 and
bout(7) = 0). In Remark 4.9, we indicate how to extend our algorithm and analysis to general
VPND instances. We will also assume that the receivers of the VPND instance outnumber
the senders; the algorithm and analysis in the other case are symmetric.

Figure 5 presents our algorithm for the VPND problem, which we call VPN-SAMPLE-
AUGMENT. Its high-level outline is the same as for the SAMPLE-AUGMENT algorithm. Given
an instance Z of VPND, we first define a random subproblem, which in this case is an instance
Zssron of SSRoB. The only random parameter of Zgsg,p is the sink vertex, which is a sender
5 of 7 that is picked uniformly at random. The source vertices of Zgsr,s are defined to be
the receivers of Z, and each corresponding demand pair is given unit weight. Finally, the
cost M of buying capacity on an edge is defined to be the number of senders. We then solve
the random subproblem Zgsgr,5 with the SAMPLE-AUGMENT algorithm of Subsection 3.1.
We interpret the resulting feasible solution of Zgsg,p as follows. Let F' be the set of edges

44

www.manaraa.com

on which the SAMPLE-AUGMENT subroutine bought capacity. In our VPND solution, we
reserve M units of capacity on each edge e € F'. If the SAMPLE-AUGMENT algorithm rents
capacity for an edge e, then in our VPND solution we reserve the same amount of capacity
on e. Finally, we greedily augment this partial solution to a feasible solution for the VPND
instance Z as follows: independently for each sender s # §, reserve one unit of capacity for
s’s exclusive use on a shortest path between s and F'. For each sender s and receiver r, the
s-r path Py, is defined as the concatenation of s’s shortest path to F', a path through F' to
3, and the s-r path defined by the SAMPLE-AUGMENT subroutine’s solution to the instance
ZsskoB-

Next we prove some basic facts about the algorithm VPN-SAMPLE-AUGMENT. For
the remainder of the analysis, fix an instance Z = (G, D,b) of VPND that satisfies our two
standing assumptions. Let R and S denote the sets of receivers and senders of Z, respectively.
Let F' denote the set of edges bought by the SAMPLE-AUGMENT algorithm in the subproblem
step of VPN-SAMPLE-AUGMENT.

Lemma 4.1 The algorithm VPN-SAMPLE-AUGMENT produces a feasible solution with prob-
ability 1.

Proof: Fix a valid demand matrix {fs }ses,er- We need to show that routing f,, units
of flow on the path Py, defined above for every s € S and r € R does not violate any
capacity constraint (with probability 1). We first claim that no edge e € F' bought by the
SAMPLE-AUGMENT subroutine in the subproblem step is used beyond its capacity. This
follows because M units of capacity are reserved on each such edge and, since there are only
M senders, Z” Jor <D bout(s) = M.

On the other hand, the VPN-SAMPLE-AUGMENT algorithm explicitly reserves capacity
on each edge outside F' for each path that uses it. In more detail, for every sender s, all
paths of the form P;,. begin with a shortest path from s to F', and the augmentation step
of the VPN-SAMPLE-AUGMENT algorithm reserves one unit of capacity on this subpath for
exclusive use by s. Since Y fo < boui(s) = 1, there is sufficient capacity for the traffic on
these subpaths. Similarly, for each receiver r, all paths of the form P, conclude with the
S-r path P, defined by the SAMPLE-AUGMENT algorithm’s solution to the instance Zggpop-
Moreover, Y f;, < 1. By the definition of the augmentation step of the SAMPLE-AUGMENT
algorithm, there is one unit of capacity on the edges of P, \ F reserved for exclusive use by
the sender r. There is thus sufficient capacity on every edge for the traffic of every path P,
and the proof is complete. H

Also, the union of the routing paths produced by the VPN-SAMPLE- AUGMENT algorithm
form a tree with probability 1.

Lemma 4.2 If a consistent tie-breaking rule is used to compute shortest paths, then with
probability 1 the algorithm VPN-SAMPLE-AUGMENT produces a solution in which the edges
with non-zero capacity form a tree.

Proof: Since the set F' is the output of a Steiner Tree instance algorithm, it is (or can be
assumed to be) a tree. By the definition of the augmentation steps of the SAMPLE-AUGMENT
and VPN-SAMPLE-AUGMENT algorithms, all other edges with non-zero capacity lie on a

45

www.manaraa.com

shortest path between a demand ;7 and the set F—equivalently, are contained in the shortest-
path tree in the contracted graph G/ F rooted at the vertex corresponding to F'. This implies
that if a consistent tie-breaking rule is used to compute shortest paths, the set of all edges
with non-zero capacity forms a tree. B

4.2 Analysis

We now bound the expected cost of the solution produced by the VPN-SAMPLE-AUGMENT
algorithm for the VPND instance Z. We will do this by bounding three parts of this cost
separately: the expected cost corresponding to the set F' of edges bought by the SAMPLE-
AUGMENT subroutine in the subproblem step; the expected cost corresponding to the rented
edges in the subproblem step; and the expected cost of the augmentation step. The first
two steps hinge on the following lemma, which bounds the expected cost of an optimal
solution to the (random) instance of Steiner Tree that arises in the subproblem step of the
SAMPLE-AUGMENT subroutine (cf., Lemma 2.2).

Lemma 4.3 Let OPTypy denote the cost of an optimal solution for the VPND instance T.
Let OPT, , denote the cost of an optimal solution for the Steiner Tree instance in the sub-
problem step of the SAMPLE-AUGMENT subroutine, given the random choices of the sender
§ € S and receivers R C R in the sampling steps of the VPN-SAMPLE-AUGMENT and
SAMPLE-AUGMENT algorithms, respectively. Then

OPTypn

E|OPT, ;| <
[S,R] — M)

(34)

where the expectation is over the random choices of § and R.

Proof: We begin with the following equivalent description of the random choices made in
the sampling steps of the VPN-SAMPLE-AUGMENT and SAMPLE-AUGMENT algorithms.
Suppose each receiver picks a sender independently and uniformly at random. Let Dy, C R
denote the random set of receivers that pick the sender s. Then, independently choose a
sender § uniformly at random and consider the Steiner Tree instance Z; defined by D; U {s}.
We claim that this random process induces the same distribution over Steiner Tree instances
that the algorithm VPN-SAMPLE-AUGMENT does. In both processes, one sender §, chosen
uniformly at random from the set of all senders, is included in the Steiner Tree instance. In the
VPN-SAMPLE-AUGMENT algorithm, each receiver has a 1/M probability of being included
in the Steiner Tree instance by the definition of the sampling step of the SAMPLE-AUGMENT
subroutine. In the new random process, since there are M senders, the probability that a
receiver picks the sender § and is included in the resulting Steiner Tree instance is also 1/M.
Moreover, these events are independent of each other and of the choice of the sender s,
just as in the VPN-SAMPLE-AUGMENT algorithm. The two random processes therefore
induce the same distribution over Steiner Tree instances, and we can prove the lemma by
establishing (34) for the new random process above.

We now prove that the expected cost of an optimal solution to the random Steiner Tree
instance Z; is at most OPTypy /M. We will prove this inequality after conditioning on the

46

www.manaraa.com

partition {D;}scs of receivers, with the expectation only over the choice of §; the uncondi-
tional inequality (34) then follows. Fix an optimal solution to the VPND instance Z that
reserves the paths { P} cs,er and capacities {u}}.cp. We next show how to pack feasible
solutions for all M of the Steiner Tree instances {Z,}scs into this optimal solution.

For each sender s € S, let G} denote the subgraph of G with the edge set U,cp, P;,.. Since
G spans D U {s}, the cost ¢(G%) of the subgraph GZ is at least denote the value OPT of
an optimal solution to Z,. Moreover, if an edge e appears in k£ subgraphs of the form G7,
then it is a member of k£ sender-receiver paths that share no endpoints. Since simultaneous
routing of traffic on these k£ paths must be supported, O PTy py must install at least & units
of capacity on the edge e. Therefore,

OPTypy > Y ¢(Gy) > OPT,.
SES SES

Thus, if we pick a sender uniformly at random from the M senders, E ;[OPTy] < OPTypy/M,
which completes the proof. ll

A proof identical to that of Lemma 2.3 bounds the expected cost incurred by the VPN-
SAMPLE-AUGMENT algorithm for bought edges in its subproblem step.

Lemma 4.4 If an a-approximation algorithm for Steiner Tree s used in the subproblem step
of the SAMPLE-AUGMENT subroutine, then the expected cost incurred by the VPN-SAMPLE-
AUGMENT algorithm for bought edges in its subproblem step is at most - OPTypy.

We next use the universally strict cost shares for Steiner Tree (Subsection 3.1) to bound
the expected cost incurred by the VPN-SAMPLE-AUGMENT algorithm in the subproblem
step for edges that were rented by its SAMPLE-AUGMENT subroutine.

Lemma 4.5 The expected cost incurred by the VPN-SAMPLE-AUGMENT algorithm for
rented edges in its subproblem step is at most 2- OPTypy.

Proof: Let C denote the cost paid by the VPN-SAMPLE-AUGMENT algorithm for rented
edges in its subproblem step. Recall from Definition 3.2 and Example 3.3 that the Prim cost-
sharing method of Example 2.8 is universally 2-strict. In particular, Lemma 3.4 implies that
these cost shares are 2-strict no matter what Steiner Tree algorithm is used in the subproblem
step of the SAMPLE-AUGMENT algorithm.

We next condition on the choice of § in the sampling step of the VPN-SAMPLE-AUGMENT
algorithm. For a subset R C R of receivers, let OPT; j, denote the value of a minimum-cost

Steiner tree spanning § and all of the receivers in R. The proof of Lemma 2.9, and the
inequalities (4) and (8) in particular, imply that

E.[C|s] <2M B, [OPT&R] ,

where the expectations are over the random choice of the set R of receivers in the SAMPLE-
AUGMENT subroutine’s sampling step. Taking expectations over the choice of §, we obtain

S,

B, 7(C] <2M B [OPT, 5| <2-OPTypy,
47

www.manaraa.com

where the second inequality follows from Lemma 4.3. The proof is complete. B

Our final lemma bounds the expected cost of the augmentation step of the VPN-
SAMPLE-AUGMENT algorithm.

Lemma 4.6 The expected cost incurred in the augmentation step of the VPN-SAMPLE-
AUGMENT algorithm is at most 2- OPTypy.

Proof: Since the set F' of bought edges contains the sender §, we can prove the lemma by
showing that, if a sender § is picked uniformly at random, then

> s, 8)

seS

E <2-OPTypy,

where £(-,-) denotes shortest-path distance in G. To prove this inequality, we fix a set RCR
of M receivers. Every perfect matching M of S and R provides a lower bound > (sryem (s 1)
on OPTypy, since a feasible solution must support the simultaneous communication of all
of the matched pairs of M. Averaging over all of the M! possible perfect matchings of S

and R, we obtain
1

i Z l(s,r) < OPTypn,

SGS,TGR

as each sender-receiver pair (s,r) appears in (M — 1)! of the M! perfect matchings. This
inequality implies that

E; {Z €(§,r)} < OPTypy. (35)

Also, by the Triangle inequality for shortest-path distances,

D U, 8) <Y s)+ D Us,r) <) U3, 1) + OPTypy, (36)

s€S reR (s,r)eM rek

where M is an arbitrary perfect matching of S and R. Taking expectations (over the choice
of §) in (36) and combining with (35) proves the lemma. W

Combining Lemmas 4.4-4.6 with the 1.55-approximation algorithm for the Steiner Tree
problem due to Robins and Zelikovsky [58] yields the main theorem of this section.

Theorem 4.7 There is a randomized 5.55-approzimation algorithm for the VPND problem.

Lemma 4.2 states that the VPN-SAMPLE-AUGMENT algorithm always outputs a tree
solution. Our analysis of the algorithm, however, does not assume that the paths chosen by
the optimal solution form a tree. Indeed, there are instances in which no optimal solution
forms a tree [33]. Theorem 4.7 implies that for every instance of VPND, there is a tree
solution within a (small) constant factor of the optimal (graph) solution. This resolves one
of the main open questions from [33].

48

www.manaraa.com

Corollary 4.8 FEwvery instance of VPND admits a tree solution with cost no more than 5.55
times that of an optimal (graph) solution. Moreover, this solution can be computed in poly-
nomial time.

If the constraint of polynomial-time computation is dropped, then the constant in Corol-
lary 4.8 can be improved to 5 by using an (exponential-time) optimal Steiner Tree subroutine
in the VPN-SAMPLE-AUGMENT algorithm.

Remark 4.9 The VPN-SAMPLE-AUGMENT algorithm and its analysis extend to the case
of arbitrary (integral) thresholds b, and b,,; as follows. Given an instance of VPND, suppose
we modify the instance by splitting each demand j into b;,(j) receivers and b, (j) senders,
all of which are co-located. This increases the set of feasible solutions, since it allows the
traffic of an original demand pair to be routed on more than one path. The modification
can therefore only decrease the cost of an optimal solution. On the other hand, if the VPN-
SAMPLE-AUGMENT algorithm uses a consistent tie-breaking rule for computing shortest
paths as in Lemma 4.2, then it will output a solution for the modified instance that is also
feasible for the original instance. Running the VPN-SAMPLE-AUGMENT algorithm after
splitting demands into senders and receivers therefore produces a feasible solution to the
original instance that is at most 5.55 times as costly as an optimal solution (for the original
or the modified instance).

Splitting demands into senders and receivers is only a polynomial transformation if all of
the demand thresholds are polynomially bounded. However, by adjusting the sampling prob-
abilities in the sampling steps of the VPN-SAMPLE-AUGMENT algorithm and its SAMPLE-
AUGMENT subroutine, we can easily modify the algorithm to mimic its behavior on the
modified instance in polynomial time.

5 Single-Sink Buy-at-Bulk Network Design

This section gives a simple constant-factor approximation algorithm for the widely studied
SSBaB problem. Our algorithm is closely related to that of Guha, Meyerson, and Muna-
gala [32], but the analysis tools developed in this paper permit a tighter and equally simple
analysis. Subsection 5.1 introduces notation for our analysis and reviews some well-known
transformations of SSBaB instances. Subsection 5.2 presents our algorithm and analysis.

5.1 Preliminaries

Recall that an instance of the SSBaB problem (Problem 1.3) comprises an undirected graph G
and edge costs ¢; a set D of demand pairs {(s;,?)}¥_,; a weight w; > 0 for each demand pair
(s;,t), denoting the amount of flow that s; wants to send to ¢; and K cable types {1,2,..., K},
where the jth cable has capacity u; and cost o; per cable per unit length. The goal is to
compute a minimum-cost way of installing cables so that there is sufficient capacity for all
sources to route flow simultaneously.

Fix an instance Z of SSBaB. We will assume that each parameter u; and o; is a power
of 2. Similarly to [32], this assumption can be enforced while losing a factor of 4 in the

49

www.manaraa.com

approximation ratio, by rounding each capacity u; down to the nearest power of 2 and each
o; up to the nearest power of 2. By scaling and reordering cable types, we can assume that
l=wu < - <ugand 1l =0y < - - < og; if u; < u; and 0; > 0, then cable type i is
redundant and can be eliminated.

Define 0; = 0;/u;, which intuitively is the “incremental cost” of using cable type j. For
all j, d; is a power of 2. We can assume that 6; > ... > g, since if 6; < d; for some 7 < j,
then cable type j is redundant and can be eliminated.

Finally, we define g; = 225 u;. Since §; > 0,41, g; < 1,41 and hence
J
l=wm <gi<us < g <...<ug < gg = 00. (37)

Next, we would like to assume that all weights w; are integral. This assumption is not
without loss of generality, as we have already scaled the cable capacities. Instead, we enforce
this assumption with the following “redistribution lemma.” Roughly speaking, this lemma
shows how to take a grouping parameter U, along with a tree with weights on its vertices,
and randomly move weights throughout the tree so that the total weight at every node of
the tree becomes either 0 or U. (For ensuring integral demands, we will take U to be 1).
Moreover, this random process has two important properties: the probability that a vertex
in the tree receives weight U is proportional to its initial weight, and no edge of the tree
carries too much flow during the reallocation.

Lemma 5.1 (Redistribution Lemma) Let T be a tree and U > 0 a parameter. Suppose
each vertex j € T has a nonnegative weight w; < U and that the sum Zj w; of the weights
is a multiple of U. Then there is an efficiently computable (random) flow f in T with the
following properties.

(a) With probability 1, f sends at most U units of flow across each edge of T

(b) After rerouting weights according to the flow f, for every vertex j € T, the new weight
of j is U with probability w;/U and 0 with probability 1 — w,;/U.

A deterministic version of this lemma appears in [40, Lemma 1]. We include the simple proof
for completeness.

Proof: Replace each edge of T' by two oppositely directed arcs. We first show that the lemma
holds in this bidirected tree 7. We start by rooting 7" at an arbitrary vertex r and taking
an Euler tour of 7" starting at r. Order the vertices ji,...,j, of T according to their first
appearance in this Euler tour. For each i € {1,2,...,n}, let W; denote the sum of the
weights of the first 7 vertices in this ordering. Define Wy to be 0.

Pick a value Y drawn uniformly at random from (0,U]. Call vertex j; unlucky if for
some integer z, W; | <axU +Y < W; if the running sum of weights just crossed the point
Y modulo U and lucky otherwise. After this procedure concludes, we define the flow f to
reroute weights as follows. If a vertex 7; is lucky, we add a flow path to f that routes all of j;’s
weight to the unlucky vertex that is next according to the ordering jir1,..., Jn, J1s -5 Ji1-
Otherwise, the vertex j; is only allowed to route W; — (U + Y) units of its weight to the
next unlucky vertex, where x is the integer defined above.

20

www.manaraa.com

After this rerouting, a vertex has weight U if it is unlucky and weight 0 if it is lucky.
The probability that the vertex j is unlucky is precisely w;/U. Thus the flow f satisfies
part (a) of the lemma. The flow need not satisfy part (b), however: while f routes at most
U units of flow on each arc of f, this corresponds to routing at most 2U units of flow on each
edge of the original undirected tree T'. But since f routes at most U units of flow in each
direction across each edge of T, we can perform rudimentary flow-canceling independently
on each edge of T. This yields a flow f in T that satisfies part (b) of the lemma and, since
it redistributes weights identically to £, also satisfies part (a). W

We will use Lemma 5.1 as a preprocessing step to collect integral demands at some
subset of the sources of the instance Z. First, we can assume that the sum of the demand
pair weights in Z is greater than 1; otherwise even the cheapest cable type effectively has
infinite capacity, and Z is equivalent to a Steiner Tree instance. We also assume that the
sum W of the demand pair weights in Z is a power of 2 and is at least uy; this assumption
can be removed by adding a dummy demand pair (¢,¢) with an appropriate weight, and
by modifying the following algorithm and analysis to ensure that this dummy weight never
leaves the sink ¢.

As a preprocessing step of the algorithm in the next subsection, we use an a-approximation
algorithm for the Steiner Tree problem to compute a tree T; that spans all of the sources,
and build one cable of type 1 on each edge of 7. We then apply Lemma 5.1 to the tree Tj,
with U = 1 and the weight of the source s; defined as the fractional part w; — |w;]| of its
weight in Z. After this procedure concludes, there is an integral amount of weight at every
source of Z.

We now bound the cost of 7T,. Fix an optimal solution to Z and let OPT denote its
cost. Let C*(j) denote the cost of the cables of type j in this solution. Note that OPT =
Z;il C*(j). This solution must install nonzero capacity on a subgraph G* of G that spans
all of the sources of Z. Thus one candidate for a Steiner Tree solution 7Ty is to build one
type 1 cable on each edge of G*. Since o, = 1, the cost of this candidate solution is at most

() (38)

0j

7=1
Since we use an a-approximation algorithm to compute the Steiner tree solution 7y, the cost
of Ty is at most « times the quantity in (38).

5.2 The Algorithm SSBAB-SAMPLE-AUGMENT

We now present our constant-factor approximation algorithm for the SSBaB problem. The
algorithm is similar to that of Guha, Meyerson, and Munagala [32], where the network is
designed incrementally in stages. At the beginning of each stage j there will be a set of
demands, each of which represents a group of u; units of traffic that must be routed to the
sink. During the jth stage, we use the value u;,; as an “aggregation threshold”, and reroute
groups of u;1/u; demands (each of weight u;) into a single demand of weight u;;. We buy
cables on the paths required for this agglomeration. At the end of all of the stages, every

ol

www.manaraa.com

demand reaches the sink. The final solution is the union of all of the cables bought in all
of the stages. Since this capacity is sufficient to move all of the prescribed traffic from the
sources to the sink (via the concatenation of the rerouting paths used in each stage of the
algorithm), this solution is feasible.

Let W denote the sum of the demand pair weights; recall from Subsection 5.1 that we
can assume that W is a power of 2. Our preprocessing step from Subsection 5.1 ensures
that at the beginning of the first stage there is an integral weight at every source vertex.
If the source s; has weight w; at the beginning of the first stage, we interpret this as w;
co-located demands, each of weight 1. Let D; denote the set of these unit-weight demands.
While naively replicating demands could result in a pseudopolynomial-time algorithm, non-
uniform sampling can be added to the SSBAB-SAMPLE-AUGMENT algorithm to simulate
the effect of this replication in polynomial time (see also Remark 4.9).

More generally, at the beginning of the jth stage, there is a set D; of W/u; demands,
located at the source vertices of Z, with weight u; each. We now describe each stage j of
the algorithm in more detail; see also Figure 6. In the sampling step, we choose a random
subset D; C D; of demands, with each demand of D; picked independently with probability
p; = uj/g; = 0j/o;+1. Note that the sampling probability p; is the ratio between the
costs of the relatively low-capacity type j cables and relatively high-capacity type (j + 1)
cables, analogous to the sampling step in the algorithm SAMPLE-AUGMENT for rent-or-buy
problems. In the subproblem step, we compute a Steiner tree 7; spanning the set F};, which
is the union of the sink ¢ and the source vertices that contain a demand of ﬁj. We build one
cable of type (j + 1) on each edge of 7;. In the augmentation step, we route the demands
outside lA)j to vertices of Fj along shortest paths, while building cables of type j on these
shortest paths. In the gathering step, for each co-located group of ;1 /u; demands, we send
all of these demands back to the originating location (at the beginning of this stage) of one of
them, chosen uniformly at random. This group of w1 /u; demands is then treated as a single
demand of D;;; with weight u;,; in the next stage. Finally, the rounding step is like the
preprocessing step of Subsection 5.1 and uses Lemma 5.1 to gather the remaining demands
into groups of w;;q/u; demands. Each such group is then rerouted as in the gathering step,
and is a single demand of D;,; of weight u;,; in the next stage. In the K'th stage, gx = oo
and px = 0. Thus, the sampling step of the final stage is vacuous and all demands are sent
to the sink ¢ in the augmentation step.

Each demand d of D, can be naturally associated with a demand of D;—the demand
that participated in the complete group of u;;1/u; demands of D; that corresponds to d, and
that was randomly chosen in the gathering or rounding step. Put differently, we can view
the jth stage of the algorithm as, for each complete group of w;1/u; demands identified in
the gathering and rounding steps, multiplying the weight of a random such demand by a
u;41/u; factor and discarding the rest of them. We can thus sensibly write D, , C D; for
every j € {1,2,..., K — 1}. Finally, recall that D; is the result of the preprocessing step
of Subsection 5.1 and is not the original set of demands of Z. Define Dy as the initial set
of demands, with each demand pair (s;,t) with weight w; of Z giving rise to [w;| demands
of Dy (|w;| unit-weight demands and one demand with weight w; — |w;|). Lemma 5.1(b)
implies that the probability that a demand of Dy is also in Dy is exactly its weight.

We now analyze the algorithm on the fixed SSBaB instance Z with a sequence of lemmas.

02

www.manaraa.com

1. (Sampling step) Construct a random subset lA)j of the demands in D, by choosing each
such demand independently with probability p; = u;/g; = 0j/0;41.

2. (Subproblem step) Let F; denote the union of the sink and the sources that contain a

demand from D;. Construct an a-approximate Steiner tree 7} that spans F;. Install a
cable of type (j 4+ 1) on each edge of 7.

3. (Augmentation step) For each demand in D,, route its u; weight to the closest vertex
in F}. Install one cable of type j on each edge of this shortest path.

4. (Gathering step) For each vertex v € F}, split the demands at v into complete groups
of uji1/u; demands plus one residual group of r, < u;i1/u; demands. Route each
complete group back to the initial location (at the beginning of this stage) of one of
the u;;1/u; contributing demands, chosen uniformly at random. Install cables of type
j + 1 to provide sufficient capacity.

5. (Rounding step) Use Lemma 5.1 with the tree Tj, the parameter U = u;;;, and the
weights of the residual groups, to aggregate the weight of all of the residual groups into
complete groups of u;;1/u; demands, each with total weight exactly u;;;. Reroute a
complete group at the vertex v € F}j back to the initial location of one of the , demands
that were routed to v in the augmentation step, chosen uniformly at random. Again,
build new cables of type j + 1 to provide sufficient capacity.

Figure 6: The jth stage of the algorithm SSBAB-SAMPLE-AUGMENT.

Lemma 5.2 For every unit-weight demand d € Dy and every stage j € {1,2,..., K},

1
']

Proof: The proof is by induction. The lemma is clearly true when 7 = 1. For j > 1, we have

Since Pr[d € D, ;] = 1/u;_; by the inductive hypothesis, we only need to show that
Pr(d € D;|d € D;_1] = u;_1/u;. If d is gathered into a complete group of u;/u;_; demands
in the gathering step of stage (7 — 1) of the algorithm, then this equality holds because every
such demand is equally likely be chosen for membership in D;. Suppose d is gathered into
a residual group of r, < u;/u;_; demands at the vertex v € Fj_; in the gathering step of
stage (j — 1) of the algorithm. Then d is included in D; if and only if the Redistribution
Lemma gathers a complete group of demands at the vertex v in the rounding step and then
d is chosen for membership in D; from the r, demands in the residual group at v. By
Lemma 5.1(b), the probability of both events occurring is

TyUj—1 1 Uj—1

U Ty Uj

www.manaraa.com

which completes the proof of the lemma. W

Lemma 5.2 implies that for every stage j € {1,2,..., K}, a demand d € D; lies in the set
lA)j with probability p; x 1/u; = 1/g;. The probability that a demand d € D, with weight
w < 1 lies in the set 5]- is thus w/g;.

The next lemma bounds the expected cost of an optimal solution to the Steiner Tree
instance arising in the subproblem step of each stage of the SSBAB-SAMPLE-AUGMENT
algorithm (cf., Lemmas 2.2 and 4.3).

Lemma 5.3 For a stage j € {1,2,..., K — 1}, let T} be a minimum-cost Steiner tree
spanning Fy with cost ¢(T). Then

Elc(T))] < Y C*(i)+qij (39)

=)
i=j+1

O (i)
= 62 ,

=1

where C*(i) denotes the cost of the cables of type i in a fized optimal solution to I, and the
expectation is over the choice of D;.

Proof: As in the proof of Lemma 2.2, we will exhibit a (random) subgraph G, of G that
spans F; and has low expected cost. Fix an optimal solution for Z and a feasible way of
routing all of the traffic with respect to this solution. We first add to G; all of the edges in
the optimal solution that possess a cable of type 7 + 1 or higher. The cost of these edges is
(deterministically) at most the first sum on the right-hand side of (39).

We complete G; by considering each demand d of ﬁj in turn. In the fixed optimal
solution, the traffic of the corresponding demand d € Dy may be routed on multiple paths.
(We unfortunately cannot assume without loss of generality that an optimal solution is a
tree.) We randomly add to G one of these paths, with a path chosen with probability equal
to the fraction of d’s traffic that it carries.

We now bound the expected cost of adding these edges to GG;. Consider an edge e of G
with no cable of type j + 1 or higher in the optimal solution. First suppose that only one
cable is installed on e, say of type ¢ < j. Then e is included in the random subgraph G; if
and only if the following events occur: for some demand d € Dy and some path P that routes
some of d’s traffic across the edge e, the demand d lies in D;, and the path P is selected
among all paths that route d’s traffic. A demand d € Dy with weight w < 1 lies in ﬁj with
probability w/g;, and a path P is chosen with probability xz/w, where x is the amount of
d’s traffic that is routed on P in the optimal solution. The Union Bound then implies that
e lies in G; with probability at most f./g;, where f, is the total amount of flow on e in the
optimal solution.

Since f, < u;, edge e contributes at most c.u;/g; to the expected cost of G;. On the other
hand, the cable of type i on edge e contributes o;¢, to C*(i). Thus the expected cost in G|
for edge e is at most 1/(g; 6;) times what the optimal solution pays for the cable. For edges
on which the optimal solution installs multiple cables, this same analysis can be performed
on a cable-by-cable basis. Summing over all edges with no cable of type j+1 or higher in the
optimal solution gives the second sum on the right-hand side of (39) and proves the lemma.

o4

www.manaraa.com

We now relate the expected cost incurred by the SSBAB-SAMPLE-AUGMENT algorithm
to the expected cost of an optimal Steiner tree spanning the vertices in Fj.

Lemma 5.4 Let j € {1,2...,K — 1} be a stage and T} a minimum-cost Steiner tree span-
ning F; with cost (’(T]*) The expected cost incurred in stage j of the algorithm SSBAB-
SAMPLE-AUGMENT is at most

(3 +a) o1 E[c(T7)],
where « 1s the approximation ratio of the Steiner Tree algorithm used in the subproblem step.

Proof: Since we install one cable of type (j+ 1) on each edge of the tree T; that we compute
in the subproblem step, the expected cost incurred in this step is at most a o1 E [¢(T7)].
As in Lemma 4.5, the universally 2-strict Prim cost shares of Example 2.8 imply that the

expected cost of the augmentation step is at most 20,1 E[c(7})]. In more detail, we abuse

notation and write X(ﬁj, d;) for the Prim cost share of a demand pair (d;,?) in the Steiner
Tree instance (G, D), where D = {(d;,t) : d; € D;}. As in the proof of Lemma 2.9, we
define two random variables B; and R; for each demand d; € D;. The random variable

B; is equal to 04, times the Prim cost share X(ﬁj, d;) when d; € lA)j, and to 0 otherwise.
By Definition 2.4, >, .\, B; is at most 0.1 ¢(7}) (with probability 1). The variable R; is
defined to be zero when d; € l/jj, and is equal to o; times the length ¢(d;, Fj) of a shortest
path between d; and a vertex of Fj. Since the probability that d; lies in lA)j is p; = 0;/0j41,
following the proof of Lemma 2.9 shows that the expected cost E Y, R;] of the augmentation
step is at most 2 - E[Y~; B;], and hence is at most 20, - E[c(T})].

We complete the proof by showing that the expected cost of the gathering and rounding
steps is at most 01 E[¢(T})]. Intuitively, we will charge the expected cost of these steps
to that of the earlier augmentation step. Lemma 5.1 ensures that the rerouting of residual
demands in the rounding step can be accomplished using the cables of type j + 1 purchased
in the subproblem step, and no new cables need to be built. For every edge e of (&, one cable
of type j was installed on e in the augmentation step of the jth stage for each demand of
D; that used e to travel to a vertex of Fj. In the gathering and rounding steps, one cable of
type (j + 1) is installed on e for each such demand that is chosen for membership in the set
Dji1. Recall from the proof of Lemma 5.2 that for every demand d € D;, the probability
that d is included in D;,; is precisely u;/u;;;. The expected cost of rerouting demands in
the gathering and rounding steps is therefore at most

Ui O Ojn

Ujy1 0j 0;

times the expected cost of the augmentation step. Since §;4; < §,/2, the expected cost of

the gathering and routing steps is at most o1 E[c(7})]. The lemma is proved. B

Putting together our bounds on the expected costs incurred in the preprocessing steps
and in all of the stages of the SSBAB-SAMPLE-AUGMENT algorithm implies that it is a
constant-factor approximation algorithm for the SSBaB problem.

95

www.manaraa.com

Theorem 5.5 Algorithm SSBAB-SAMPLE-AUGMENT is a 76.8-approximation algorithm
for the SSBaB problem.

Proof: Fix an optimal solution with cost OPT = Zj C*(j). By Lemmas 5.3 and 5.4, the
expected cost incurred by the algorithm in stages 1 through K — 1 is at most

Z 3+O/ J]+1 E[(’(TJ*)} — (3+0)ZC*() [Z 0:2-1 +ZUJ+1]

0
=1 i=1 j=1 9

.

Recalling that o;1,/¢; = d; for each j and adding in the cost (38) of the preprocessing step
that produces unit-weight demands for stage 1, we get that the total expected cost incurred
by the SSBAB-SAMPLE-AUGMENT algorithm after the initial rounding of cable costs and
capacities and before stage K is at most

(B+a)> C(i)- [Z ”j: +Z§—:’] .

=1 j=0 j=t

Since 0,41 > 20; and §;4; < §;/2 for every j € {1,2,..., K — 1}, this cost is at most
434+ «) - OPT.

In the final stage K of the algorithm, we route demands of size ux to the sink ¢ along
shortest paths, building cables of type K to support this flow. This costs

> ok l(d,t),

deDg

where £(d, t) denotes the length of a shortest d-t path in G. Since every demand d € D, with
weight wy < 1 corresponds to a demand of Dy in the final stage with probability wg/ux
(Lemma 5.2), the expected cost of these cables of type K is

3 ;”d ok Ud,t) = 8 Y wall(d, 1). (40)

d€Dg K deDg

Since 0x is the smallest-possible incremental cost, the right-hand side of (40) is a lower
bound on the cost of the optimal solution to Z. Thus the expected cost in the Kth stage of
the SSBAB-SAMPLE-AUGMENT algorithm is at most OPT.

Finally, our initial rounding of the cable costs and capacities increases our approximation
ratio by a factor of 4. The final approximation ratio of the SSBAB-SAMPLE- AUGMENT algo-
rithm is thus 4 [4(3 + a) + 1]. Using the Steiner Tree algorithm of Robins and Zelikovsky [58],
we can take a = 1.55 to achieve an approximation ratio of 76.8. W

6 Recent and Future Work

We conclude by discussing recent research motivated by the present paper and some direc-
tions for future work.

o6

www.manaraa.com

6.1 Recent Work

The initial publication of our MRoB algorithm [34] led to two subsequent papers on the
problem. As discussed in Remark 3.44, Becchetti et al. [12] designed an alternative way
to force the AKR-GW algorithm to build additional edges, and used it and Theorem 2.10
to give a 6.83-approximation algorithm for MRoB. Very recently, Fleischer et al. [25] de-
signed a (non-straightforward) 3-strict cost sharing method for the AKR-GW algorithm.
In conjunction with the SAMPLE-AUGMENT algorithm and Theorem 2.10, this gives a 5-
approximation algorithm for MRoB, the best that is currently known. No improvements to
our SSRoB algorithm have yet appeared in the literature, although Gupta, Srinivasan, and
Tardos [39] recently derandomized the algorithm. Their approach is based on an alternative
analysis of the algorithm and results in a deterministic 4.2-approximation algorithm, slightly
better than the deterministic 4.55-approximation algorithm of Swamy and Kumar [60].

For buy-at-bulk problems, no improvement of our SSBaB algorithm is known. On the
other hand, Charikar and Karagiozova [15] recently gave the first non-trivial approximation
algorithm for the generalization of the multicommodity buy-at-bulk network design problem
in which the concave capacity cost function (or, equivalently, the available cable types) can
vary from edge to edge. The algorithm in [15], inspired by the SAMPLE- AUGMENT algorithm
of this paper, randomly inflates the weight of demand pairs and then runs a greedy heuristic.

Two improvements of our VPND algorithm and analysis have recently been given. The
first is a 4.74-approximation algorithm due to Eisenbrand and Grandoni [21], the second a
3.55-approximation algorithm of Eisenbrand et al. [22]. Both papers are based on variations
of our algorithm and refinements of our analysis.

Most significantly, our definition of strict cost shares has been generalized and applied
to give the first constant-factor approximation algorithms for several problems in stochastic
optimization. As an example, consider the following Stochastic Steiner Tree problem. The
input is a graph G with edges costs ¢, a sink vertex ¢, a set S = {s1,..., s} of sources, a
distribution 7 over sets of sources and an “inflation factor” o > 1. The setup is as follows:
an algorithm chooses a set Fi of edges in the first stage; a set S C S of sources is chosen
randomly according to 7; and then the algorithm chooses a set Fy of edges so that Fy U I3
spans ¢t and the sources of S. The incentive for selecting edges in the first stage (without
knowledge of the realization §) is that each edge e costs ¢, in the first stage but oc, in
the second stage. The goal is to design an algorithm that chooses F} and F; in a way that
approximately minimizes the expectation (over m and Fy) of the total cost ¢(Fy) + oc(F5).

Gupta et al. [37] showed that random sampling, a Steiner Forest subroutine that admits
a strengthened form of strict cost shares, and greedy augmentation can be used to obtain a
3.55-approximation algorithm for the Stochastic Steiner Tree problem. The only assumption
on the distribution 7 in [37] is that independent samples of 7 can be drawn in polynomial
time. Gupta et al. [37] also obtained similar results for stochastic versions of the Vertex
Cover and Uncapacitated Facility Location problems. Earlier approximation algorithms for
these problems both had weaker performance guarantees and imposed additional restrictions
on the distribution 7 [42, 57]. Strict cost shares and generalizations have since been used
to design constant-factor approximation algorithms for many other stochastic optimization
problem [36, 38, 41].

o7

www.manaraa.com

6.2 Future Directions
We conclude the paper with several suggestions for future research.

1. An obvious open question is to narrow the gap between the best approximation and
inapproximability results for all of the problems studied in this paper. In particular,

are any of these problems provably harder than the Steiner Tree problem (assuming
P # NP)?

2. A more modest goal is to understand the limitations of our analysis framework in
Section 2. For example, is the guarantee in Theorem 2.10 the best possible? Is it
possible to refine the definition of strict cost shares and sharpen this guarantee?

3. Can the ideas in our MRoB and SSBaB algorithms be combined to yield an approxima-
tion algorithm for the multicommodity buy-at-bulk problem? While recent results of
Andrews [2] rule out constant-factor approximation algorithms under reasonable com-
plexity assumptions, our techniques might give an O(logn)-approximation algorithm
for the problem that does not resort to probabilistic tree embeddings [9, 23].

4. Can the constant-factor approximation algorithm for Stochastic Steiner Tree in [37] be
extended to the stochastic version of the Steiner Forest problem? Such an extension
would follow from a strengthened version of our strict cost shares in Subsection 3.3.

5. Only our SSRoB algorithm has been derandomized [39]. Can our other algorithms also
be derandomized?

References

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm for
the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440
456, 1995. (Preliminary version in 23rd STOC, 1991).

[2] M. Andrews. Hardness of buy-at-bulk network design. In Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 115 124, 2004.

[3] M. Andrews and L. Zhang. Approximation algorithms for access network design. Algo-
rithmica, 34(2):197-215, 2002. (Preliminary version in 39th FOCS, 1998).

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501 555, 1998.

[5] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proceedings of the 38th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pages 542547,
1997.

(6] B. Awerbuch, Y. Azar, and Y. Bartal. On-line generalized Steiner problem. In Proceed-
ings of the 7Tth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
68-74, 1996.

o8

www.manaraa.com

[7]

8]

[11]

[12]

Y. Bartal. Competitive Analysis of Distributed On-line Problems — Distributed Paging.
PhD thesis, Tel-Aviv University, Israel, 1994.

Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applica-
tions. In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 184-193, 1996.

Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings of
the 30th Annual ACM Symposium on Theory of Computing (STOC), pages 161-168,
1998.

Y. Bartal, M. Charikar, and P. Indyk. On page migration and other relaxed task sys-
tems. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 43 52, 1997.

Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data man-
agement. Journal of Computer and System Sciences, 51(3):341-358, 1995. (Preliminary
version in 24th STOC, 1992).

L. Becchetti, J. Konemann, S. Leonardi, and M. Pal. Sharing the cost more efficiently:
Improved approximation for multicommodity rent-or-buy. In Proceedings of the 16th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 375 384, 2005.

M. Bern and P. Plassman. The Steiner problem with edge lengths 1 and 2. Information
Processing Letters, 32(4):171 176, 1989.

M. Charikar and S. Guha. Improved combinatorial algorithms for the facility loca-
tion and k-median problems. In Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 378 388, 1999.

M. Charikar and A. Karagiozova. On non-uniform multicommodity buy-at-bulk network
design. In Proceedings of the 37th Annual ACM Symposium on the Theory of Computing
(STOC), pages 176 182, 2005.

C. Chekuri, S. Khanna, and J. Naor. A deterministic algorithm for the Cost-Distance
problem. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 232 233, 2001.

J. Chuzhoy, A. Gupta, J. Naor, and A. Sinha. On the approximability of some network
design problems. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 943 951, 2005.

V. Chvatal. Linear Programming. Freeman, 1983.

R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. A faster implementation of the
Goemans-Williamson clustering algorithm. In Proceedings of the 12th Annual ACM-
STAM Symposium on Discrete Algorithms (SODA), pages 17 25, 2001.

29

www.manaraa.com

[20] N. G. Duffield, P. Goyal, A. G. Greenberg, P. P. Mishra, K. K. Ramakrishnan, and J. E.
van der Merwe. A flexible model for resource management in virtual private networks.
In Proceedings of SIGCOMM, pages 95-108, 1999.

[21] F. Eisenbrand and F. Grandoni. An improved approximation algorithm for virtual
private network design. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 928 932, 2005.

[22] F. Eisenbrand, G. Grandoni, G. Oriolo, and M. Skutella. New approaches for virtual
private network design. In Proceedings of the 32nd Annual International Colloquium
on Automata, Languages, and Programming (ICALP), volume 3580 of Lecture Notes in
Computer Science, pages 1151 1162, 2005.

[23] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing (STOC), 2003.

[24] J. A. Fingerhut, S. Suri, and J. S. Turner. Designing least-cost nonblocking broadband
networks. Journal of Algorithms, 24(2):287 309, 1997.

[25] L. K. Fleischer, J. Kénemann, S. Leonardi, and G. Schifer. A tight 4.67-approximation
algorithm for the multi-commodity rent-or-buy problem. Technical Report 09-05, Di-
partimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”, 2005.

[26] H. N. Gabow, M. X. Goemans, and D. P. Williamson. An efficient approximation
algorithm for the survivable network design problem. Mathematical Programming, 82(1-
2):13 40, 1998.

[27] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Proceedings
of the 37th Annual Symposium on Foundations of Computer Science (FOCS), pages
302-309, 1996.

[28] A. Goel and D. Estrin. Simultaneous optimization for concave costs: Single sink ag-
gregation or single source buy-at-bulk. In Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 499-505, 2003.

[29] M. X. Goemans and D. P. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24(2):296-317, 1995. (Prelimi-
nary version in 5th SODA, 1994).

[30] M. X. Goemans and D. P. Williamson. The primal-dual method for approximation
algorithms and its application to network design problems. In D. S. Hochbaum, editor,
Approzimation Algorithms for NP-hard Problems. PWS Publishing, 1997.

[31] S. Guha, A. Meyerson, and K. Munagala. Hierarchical placement and network de-
sign problems. In Proceedings of the 41st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 603-612, 2000.

60

www.manaraa.com

[32] S. Guha, A. Meyerson, and K. Munagala. A constant factor approximation for the single
sink edge installation problems. In Proceedings of the 33rd Annual ACM Symposium on
the Theory of Computing (STOC), pages 383-388, 2001.

[33] A. Gupta, A. Kumar, J. Kleinberg, R. Rastogi, and B. Yener. Provisioning a Virtual
Private Network: A network design problem for multicommodity flow. In Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pages 389 398,
2001.

[34] A. Gupta, A. Kumar, M. Pél, and T. Roughgarden. Approximation via cost-sharing:
A simple approximation algorithm for the multicommodity rent-or-buy problem. In
Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 606 615, 2003.

[35] A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation algo-
rithms for network design. In Proceedings of the 35th Annual ACM Symposium on
Theory of Computing (STOC), 2003.

[36] A. Gupta and M. Pél. Stochastic Steiner trees without a root. In Proceedings of
the 32nd Annual International Colloquium on Automata, Languages, and Programming
(ICALP), volume 3580 of Lecture Notes in Computer Science, pages 1051-1063, 2005.

[37] A. Gupta, M. Pal, R. Ravi, and A. Sinha. Boosted sampling: Approximation algorithms
for stochastic optimization. In Proceedings of the 36th Annual ACM Symposium on the
Theory of Computing (STOC), pages 417-426, 2004.

[38] A. Gupta, M. Pél, R. Ravi, and A. Sinha. What about Wednesday? Approximation
algorithms for multistage stochastic optimization. In Proceedings of the 8th Interna-
tional Workshop on Approzimation Algorithms for Combinatorial Optimization Prob-
lems (APPROX), volume 3624 of Lecture Notes in Computer Science, pages 86 98,
2005.

[39] A. Gupta, A. Srinivasan, and E. Tardos. Cost-sharing mechanisms for network design.
In Proceedings of the 7th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), volume 3122 of Lecture Notes in
Computer Science, pages 139 150, 2004.

[40] R. Hassin, R. Ravi, and F. S. Salman. Approximation algorithms for a capacitated
network design problem. In Proceedings of the 3rd International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization Problems (APPROX), volume 1913
of Lecture Notes in Computer Science, pages 167-176, 2000.

[41] A. Hayrapetyan, C. Swamy, and E. Tardos. Network design for information networks.
In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 933-942, 2005.

61

www.manaraa.com

[42] N. Immorlica, D. R. Karger, M. Minkoff, and V. S. Mirrokni. On the costs and benefits
of procrastination: Approximation algorithms for stochastic combinatorial optimiza-
tion problems. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 691 700, 2004.

[43] K. Jain and V. Vazirani. Applications of approximation algorithms to cooperative
games. In Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing
(STOC), pages 364 372, 2001.

[44] K. Jain and V. Vazirani. Equitable cost allocations via primal-dual-type algorithms. In
Proceedings of the 34th Annual ACM Symposium on the Theory of Computing (STOC),
pages 313 321, 2002.

[45] D. R. Karger and M. Minkoff. Building Steiner trees with incomplete global knowl-
edge. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 613 623, 2000.

[46] S. Khuller and A. Zhu. The general Steiner tree-star problem. Information Processing
Letters, 84(4):215 220, 2002.

[47] T. U. Kim, T. J. Lowe, A. Tamir, and J. E. Ward. On the location of a tree-shaped
facility. Networks, 28(3):167 175, 1996.

[48] P. N. Klein. A data structure for bicategories, with application to speeding up an
approximation algorithm. Information Processing Letters, 52(6):303 307, 1994.

[49] J. Kénemann, S. Leonardi, and G. Schéfer. A group-strategyproof mechanism for Steiner
forests. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 612 619, 2005.

[50] A. Kumar, A. Gupta, and T. Roughgarden. A constant-factor approximation algorithm
for the multicommodity rent-or-buy problem. In Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 333 342, 2002.

[51] M. Labhé, G. Laporte, I. M. Martin, and J. J. Salazar Gonzalez. The median cycle prob-
lem. Technical Report 2001/12, Department of Operations Research and Multicriteria
Decision Aid at Université Libre de Bruxelles, 2001.

[52] Y. Lee, Y. Chiu, and J. Ryan. A branch and cut algorithm for a Steiner tree-star
problem. INFORMS Journal on Computing, 8(3):194 201, 1996.

[53] A. Meyerson, K. Munagala, and S. Plotkin. Cost-Distance: Two metric network de-
sign. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 624 630, 2000.

[54] A. Meyerson, K. Munagala, and S. Plotkin. Designing networks incrementally. In
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 406 415, 2001.

62

www.manaraa.com

[55] M. Pél and E. Tardos. Group strategyproof mechanisms via primal-dual algorithms. In
Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 584-593, 2003.

[56] R. Ravi and F. S. Salman. Approximation algorithms for the traveling purchaser prob-
lem and its variants in network design. In Proceedings of the 7th Annual European
Symposium on Algorithms (ESA), volume 1643 of Lecture Notes in Computer Science,
pages 29 40, 1999.

[57] R. Ravi and A. Sinha. Hedging uncertainty: Approximation algorithms for stochastic
optimization problems. Technical Report Working paper 2003-E68, CMU GSIA, 2003.

[58] G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In Pro-
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 770 779, 2000.

[59] F.S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Approximating the single-sink
link-installation problem in network design. SIAM Journal on Optimization, 11(3):595
610, 2000. (Preliminary version in 8th SODA, 1997).

[60] C. Swamy and A. Kumar. Primal-dual algorithms for the connected facility location
problem. In Proceedings of the 5th International Workshop on Approzimation Algo-
rithms for Combinatorial Optimization Problems (APPROX), volume 2462 of Lecture
Notes in Computer Science, pages 256-269, 2002.

[61] K. Talwar. Single-sink buy-at-bulk LP has constant integrality gap. In Proceedings
of the 9th Integer Programming and Combinatorial Optimization Conference (IPCO),
volume 2337 of Lecture Notes in Computer Science, pages 475—-486, 2002.

[62] V. V. Vazirani. Approzimation Algorithms. Springer-Verlag, Berlin, 2001.

[63] H. P. Young. Cost allocation. In R. J. Aumann and S. Hart, editors, Handbook of Game
Theory, volume 2, chapter 34, pages 1193 1235. North-Holland, 1994.

63

www.manaraa.com

A Proof of Lemma 3.19

Proof of Lemma 3.19: Fix a Steiner Forest instance (G, D). A time 7 is interesting if 7 = 0, if
the -AKR-GW algorithm merges two clusters at time 7, or if a cluster becomes deactivated
at time 7. Call the time in between consecutive interesting moments an epoch. Let C; denote
the set of active clusters during the ith epoch. In the ith epoch, the dual variables of all of
the clusters in C}; are raised by some common amount, which we denote by A;. From the

definitions, we have
RS = Z A, (41)
i:SeC;

for every possible cluster S C V' and

p
Z 25 = ZAi|Ci|a (42)
i=1

SCV

where p is the number of epochs.
Let F' be the Steiner forest output by the algorithm. The key claim is the following: in
every epoch 1,
> IFN6(S)] < 2|Ci. (43)

SeC;

In other words, at every moment in time, an average active cluster only intersects two edges
of the final output F.

To prove (43), fix an epoch ¢ and obtain the graph H from the graph (V, F') by contracting
each cluster (active or inactive) of epoch i into a single vertex. Thus the vertices of H
correspond to the clusters in the ith epoch, and the edges of H are the edges of F' that span
two of these clusters. We will call the vertices of H active or inactive according to the status
of the corresponding cluster of G in the ith epoch. The inequality (43) is equivalent to the
assertion that the average degree of the active vertices of H is at most 2.

First, since the edges of F' are tight edges, and the v-AKR-GW algorithm maintains
the invariant that clusters correspond to connected components of the set of tight edges,
Lemma 3.17 implies that the graph H is acyclic. Second, we claim that no inactive vertex
of H has degree 1. This claim follows from the delete step of the v-AKR-GW algorithm.
To see this, consider a cluster S that is inactive during the ith epoch. By the definition
of the -AKR-GW algorithm, all demands in S must be inactive at this and all future
moments in time. Since the algorithm only merges classes of the demand partition that
contain currently active vertices, in the final partition P, no partition class will contain
both a demand from S and a demand from outside S. If the vertex of H corresponding to
this cluster has degree 1, then there is an edge e of F' whose removal can only disrupt the
connectivity of demand pairs with one demand in S and the other outside S. Thus edge e
is not essential for P-connectivity, and should have been removed in the delete step of the
v-AKR-GW algorithm. N

These two claims easily imply (43). Obtain H from H by discarding all the isolated
inactive vertices. Since H is acyclic, the average degree of vertices of H is at most 2.

64

www.manaraa.com

Moreover, inactive vertices of H all have degree at least 2. The active vertices of H (and H)
thus have average degree at most 2.
Having established (43), we can now bound the cost of F' as follows:

Zce = Z Z Zg (44)

ecF e€F SCV:e€d(S)
= 3 2 |F (S
Scv
p
= Y AN IFNAES), (45)
=1 SeC;
p
<) A 20 (46)
i=1
= 2 Z Zs, (47)
SCV

where (44) follows from the fact that all edges of F' are tight, equation (45) follows from (41),
inequality (46) follows from (43), and equation (47) follows from (42). W

65

www.manharaa.com

