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1 Introdu
tionWe present 
onstant-fa
tor approximation algorithms for several widely-studied NP-hardoptimization problems in network design. Our algorithms are extremely simple and havethe following 
avor: randomly sample a simpler subproblem, solve the subproblem with anexisting algorithm, and greedily extend the subproblem solution to a solution feasible forthe original problem. The approximation ratios of our algorithms improve over all of thosepreviously known, in some 
ases by orders of magnitude.We develop a general analysis framework to bound the approximation ratios of our al-gorithms. This framework is based on a novel 
onne
tion between random sampling and
ost sharing, the task of allo
ating the 
ost of an obje
t to many users of the obje
t in a\fair" manner. Spe
i�
ally, we de�ne the notion of stri
t 
ost shares, and show that su
h
ost shares provide a powerful tool for analyzing the performan
e of a 
lass of random sam-pling algorithms. While te
hniques from approximation algorithms have re
ently yieldednew progress on 
ost sharing problems, our work is the �rst to show the 
onverse|thatideas from 
ost sharing 
an be fruitfully applied in the design and analysis of approximationalgorithms.1.1 Four Network Design ProblemsTo des
ribe our results more 
on
retely, we de�ne the three primary network design problemsthat we 
onsider in this paper. We dis
uss the motivation for and prior work on theseproblems in Subse
tion 1.3 below.Problem 1.1 (Multi
ommodity Rent-or-Buy) An instan
e of themulti
ommodity rent-or-buy (MRoB) problem is de�ned by an undire
ted graph G = (V;E) and a set D =f(si; ti)gki=1 of vertex pairs 
alled demand pairs, where ea
h edge e 2 E has a nonnegative
ost 
e and ea
h demand pair (si; ti) has a nonnegative weight wi. The goal is to 
omputea minimum-
ost way of installing suÆ
ient 
apa
ity on the edges E so that wi units of 
ow
an be sent simultaneously from ea
h sour
e si to the 
orresponding sink ti. The 
ost ofinstalling 
apa
ity on an edge is given by a simple 
on
ave fun
tion: 
apa
ity 
an be rented,with 
ost in
urred on a per-unit of 
apa
ity basis, or bought, whi
h allows unlimited use afterpayment of a large �xed 
ost. Pre
isely, there are positive parameters � and M , with the
ost of renting 
apa
ity equal to � times the 
apa
ity required (per unit length), and the
ost of buying in�nite 
apa
ity equal to M (per unit length). By s
aling, we 
an assumethat � = 1 without loss of generality. We denote an MRoB instan
e by a tuple (G;D; w;M),leaving the 
ost ve
tor 
 impli
it.We will also study the spe
ial 
ase of single-sink rent-or-buy (SSRoB), where all demand pairs(si; ti) share a 
ommon sink vertex t, and the more general multi
ast rent-or-buy problem(MuRoB), where there are arbitrary demand groups instead of demand pairs.Problem 1.2 (Virtual Private Network Design) In an instan
e of virtual private net-work design (VPND), we are again given an undire
ted graph G with nonnegative edge 
osts
. There is also a set D of demands, ea
h of whi
h is lo
ated at a vertex of G. Ea
h demand2
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j 2 D possesses two nonnegative thresholds bin(j) and bout(j). These thresholds spe
ify themaximum amount of traÆ
 that demand j will re
eive from and send to other demands,respe
tively. A D �D matrix des
ribing the amount of (dire
ted) traÆ
 between ea
h pairof demands is valid if it respe
ts all thresholds. A feasible solution to an instan
e of VPNDis spe
i�ed by a path Pij for ea
h (ordered) demand pair (i; j) and by a 
apa
ity ue for ea
hedge e, su
h that there is suÆ
ient 
apa
ity to route every valid traÆ
 matrix via the pathsfPijg. The obje
tive is to �nd a feasible solution minimizing the 
ost Pe2E 
eue. We denotean instan
e of VPND by the triple (G;D; b).Problem 1.3 (Single-Sink Buy-at-Bulk) The single-sink buy-at-bulk network design (SS-BaB) problem is a generalization of the SSRoB problem. The input is the same as in thelatter problem, ex
ept that instead of a single parameter M des
ribing the 
ost of buying,there are K types of 
ables. A 
able of type i has a given 
apa
ity ui and a given 
ost (perunit length) �i. As in the SSRoB problem, the goal is to 
ompute a minimum-
ost way ofinstalling suÆ
ient 
apa
ity on the edges so that a pres
ribed amount of 
ow wi 
an be sentsimultaneously from ea
h sour
e si to the 
ommon sink t.The following simpler network design problem arises frequently as a subroutine in ouralgorithms.Problem 1.4 (Steiner Forest) An instan
e of the Steiner Forest problem is given by anundire
ted graph G with nonnegative edge 
osts 
 and a set D = f(si; ti)gki=1 of demandpairs. The goal is to 
ompute a minimum-
ost subgraph of G that 
ontains an si-ti path forevery i 2 f1; 2; : : : ; kg. We denote su
h a Steiner Forest instan
e by (G;D).The Steiner Forest problem is equivalent to the spe
ial 
ase of the MRoB problem whereM = 1. If all demand pairs of a Steiner Forest instan
e have a 
ommon sink, then itis equivalent to an instan
e of the well-known Steiner Tree problem. All of the problemsstudied in this paper 
ontain Steiner Tree as a spe
ial 
ase.Re
all that an �-approximation algorithm for a minimization problem runs in polynomialtime and returns a solution no more than � times as 
ostly as an optimal solution. Thevalue � is the approximation ratio or performan
e guarantee of the algorithm. Sin
e eventhe Steiner Tree problem is MAX-SNP-hard [13℄, Problems 1.1{1.3 
annot be solved exa
tlyor approximated to within an arbitrarily small 
onstant fa
tor in polynomial time, assumingP 6= NP [4℄. We are therefore justi�ed in seeking 
onstant-fa
tor approximation algorithmsfor these problems, with the 
onstant as small as possible.1.2 Overview of ResultsOur main results are the following.� We develop an analysis framework that shows that random sampling, a Steiner Forestsubroutine, and greedy augmentation leads to a 
onstant-fa
tor approximation algo-rithm for the MRoB problem, provided the subroutine admits what we 
all stri
t 
ostshares (de�ned in Se
tion 2). 3
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Problem Studied Previously Best Approximation This PaperMRoB over 1000 [50℄ 6.83MuRoB O(logn) [5, 23℄ 12.66SSRoB 4.55 [60℄ 3.55VPND O(logn) [23, 33℄ 5.55SSBaB 216 [61℄ 76.8Table 1: Main results of this paper. \Previously best approximation" refers to the smallestapproximation ratio known prior to the 
onferen
e versions of our work [34, 35, 36℄. Theparameter n denotes the number of network verti
es.� We modify, in a simple but novel way, the well-known primal-dual Steiner Forest algo-rithm of Agrawal, Klein, and Ravi [1℄ and Goemans and Williamson [29℄ so that it ad-mits stri
t 
ost shares. Combining this result with the one above, we obtain a random-ized approximation algorithm forMRoB with an approximation ratio of 4+2p2 � 6:83.� We extend this algorithm and analysis to obtain a 12.66-approximation algorithm forthe MuRoB problem.� For the SSRoB problem, we show that every Steiner Tree algorithm admits stri
t 
ostshares and obtain a randomized 3.55-approximation algorithm.� For the VPND problem, we build on our SSRoB algorithm and analysis to obtain arandomized 5.55-approximation algorithm.� We 
ombine ideas from our SSRoB algorithm and analysis with an SSBaB algorithmof Guha, Meyerson, and Munagala [32℄ to obtain a randomized 76.8-approximationalgorithm for the SSBaB problem.Prior to our work, the best-known approximation ratios for the MRoB, MuRoB, SSRoB,VPND, and SSBaB problems were over 1000 [50℄; O(logn), where n is the number of networkverti
es [5, 23℄; 4.55 [60℄; O(logn) [23, 33℄; and 216 [61℄, respe
tively. See also Table 1.Our 
onstant-fa
tor approximation algorithm for the VPND problem answers the main openquestions of Gupta et al. [33℄.Finally, our 6.83-approximation algorithm for MRoB gives qualitatively new informationabout the relative tra
tability of di�erent network design problems with e
onomies of s
ale.Spe
i�
ally, for many years even the simplest su
h problems with multiple 
ommodities (likeMRoB) seemed more diÆ
ult than relatively 
omplex single-sink network design problems(su
h as SSBaB). Our MRoB algorithm shows that this state of a�airs arose only be
ause ofa la
k of a good algorithm for MRoB, not be
ause of the problem's intrinsi
 diÆ
ulty.1.3 Related WorkThe literature on approximation algorithms for NP-hard network design problems is vast,and we will only dis
uss work that is dire
tly related to the problems studied in this paper. In4
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this subse
tion, we only dis
uss resear
h that o

urred prior to or independent of the presentwork. Sin
e the publi
ation of preliminary versions of the results in this paper [34, 35, 36℄,there has been mu
h resear
h on further appli
ations, generalizations, and improvements ofour algorithms and analysis te
hniques. We survey this re
ent resear
h in Se
tion 6.1.3.1 Rent-or-Buy Network DesignRent-or-buy problems have long served as a simple model of network design with e
onomiesof s
ale|where the per-unit 
ost of installing 
apa
ity on an edge de
reases as more 
apa
ityis installed. They also arise naturally in other appli
ations, in
luding sto
hasti
 optimizationproblems [45, 50℄ and fa
ility lo
ation problems [50, 60℄.For many years, the best algorithm known for theMRoB problem was anO(logn log logn)-approximation algorithm, where n denotes the number of network verti
es, due to Awerbu
hand Azar [5℄ and Bartal [9℄. (Re
ent work by Fak
haroenphol, Rao, and Talwar [23℄ 
an beused to improve the approximation ratio of this algorithm to O(logn).) The �rst 
onstant-fa
tor approximation algorithm for the problem is due to Kumar, Gupta, and Roughgar-den [50℄. However, both the analysis and the primal-dual algorithm of [50℄ are quite 
ompli-
ated, and the performan
e guarantee shown for the algorithm is, while 
onstant, extremelylarge. This 
onstant was neither optimized nor estimated in [50℄, but it is at least 1000. OurMRoB algorithm is the �rst 
onstant-fa
tor approximation algorithm for the problem thatis simple or that has a reasonably small 
onstant performan
e guarantee.The SSRoB spe
ial 
ase or MRoB, and the 
losely related 
onne
ted fa
ility lo
ationproblem, have been extensively studied in the operations resear
h literature [47, 51, 52℄ andby the 
omputer s
ien
e 
ommunity [33, 45, 46, 56, 60℄. Karger and Minko� [45℄, motivatedby the so-
alled maybe
ast problem, gave the �rst 
onstant-fa
tor approximation algorithmfor the problem. This algorithm is simple and 
ombinatorial, but has a relatively largeperforman
e guarantee. Gupta et al. [33℄ subsequently employed an LP-rounding approa
hto improve the approximation ratio. Prior to our work, the best algorithm for the problemwas the primal-dual 4.55-approximation algorithm due to Swamy and Kumar [60℄.Finally, our random sampling approa
h to the MRoB problem is reminis
ent of and par-tially inspired by previous work that gave online algorithms with polylogarithmi
 
ompetitiveratios for many rent-or-buy-type problems [6, 7, 10, 11℄.1.3.2 Virtual Private Network DesignThe virtual private network design problem 
onsidered in this paper was de�ned by Fin-gerhut et al. [24℄ and, subsequently and independently, by DuÆeld et al. [20℄. The modelis motivated by the many diÆ
ulties in estimating or assuming knowledge of a �xed traÆ
matrix for a network (see [20, 24℄). The VPND problem was later studied by Gupta et al. [33℄with an eye toward approximation algorithms.Prior to our work, the best known algorithm for the VPND problem was a straightfor-ward appli
ation of probabilisti
 tree embeddings [23℄, whi
h only guarantees a O(logn)-approximation, where n is the number of verti
es. For the spe
ial 
ase of VPND wherebin(j) = bout(j) for every demand j 2 D, a 2-approximation is known [24, 33℄. Also, Gupta5
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et al. [33℄ gave a 10-approximation algorithm for the spe
ial 
ase of the VPND problem inwhi
h the the union of the routing paths fPijgi;j2D is required to form a tree.1.3.3 Buy-at-Bulk Network DesignRent-or-buy problems are a spe
ial 
ase of buy-at-bulk network design, where the goal isthe same but the 
ost of installing 
apa
ity is given by an arbitrary 
on
ave fun
tion (or,nearly equivalently, by a set of 
able types). Buy-at-bulk network design has been intenselystudied over the last several years. After the problem was introdu
ed by Salman et al. [59℄,a long line of papers have presented su

essively superior algorithms for in
reasingly generalversions of the problem.For the SSBaB problem 
onsidered here (Problem 1.3), the �rst non-trivial approximationwas found by Awerbu
h and Azar [5℄, using the tree embeddings of Bartal [8℄, and the �rst
onstant-fa
tor approximation algorithm was given by Guha, Meyerson, and Munagala [32℄.The performan
e guarantee of the 
ombinatorial algorithm in [32℄ was not stated expli
itly,though Talwar [61℄ estimated it to be roughly 2000. Talwar [61℄ subsequently gave an LP-rounding algorithm with an improved performan
e guarantee of 216, the best known beforeour work.Many resear
hers have studied other types of single-sink network design problems withe
onomies of s
ale, in
luding the more spe
ialized A

ess Network Design problem [3, 31,32, 54℄, and the generalizations of SSBaB in whi
h the 
apa
ity 
ost fun
tion 
an be edge-dependent [16, 53℄ or unknown to the algorithm [28℄. The best known approximation ratiosfor these three problems are 68 [54℄, O(logn) [16, 53℄, and O(logn) [28℄, respe
tively. Re
entresults of Chuzhoy et al. [17℄ rule out 
onstant-fa
tor approximation algorithms for the se
ondproblem under reasonable 
omplexity-theoreti
 assumptions.For the multi
ommodity buy-at-bulk network design problem, the best known approxima-tion ratio is O(logn), whi
h follows from 
ombining the algorithm of Awerbu
h and Azar [5℄with the probabilisti
 tree embeddings given by Fak
haroenphol, Rao, and Talwar [23℄. An-drews [2℄ re
ently proved that, under reasonable 
omplexity-theoreti
 assumptions, there isno 
onstant-fa
tor approximation algorithm for this problem. Very re
ently, Charikar andKaragiozova [15℄ gave the �rst non-trivial approximation algorithm for the generalization ofthis problem in whi
h the 
on
ave 
apa
ity 
ost fun
tion 
an vary from edge to edge.1.3.4 Steiner ForestThe �rst non-trivial approximation algorithm for the Steiner Forest problem was the 2-approximation algorithm due to Agrawal, Klein, and Ravi [1℄. Subsequently, Goemans andWilliamson [29, 30℄ reinterpreted the algorithm and analysis of [1℄, and generalized them to awide 
lass of network design problems. Very re
ently, K�onemann, Leonardi, and S
h�afer [49℄gave a somewhat di�erent 2-approximation algorithm for the Steiner Forest problem. Theiralgorithm is related to the Steiner Forest algorithm that we present in Subse
tion 3.3.
6
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1.3.5 Cost SharingCost sharing has long been a fundamental subje
t in game theory and e
onomi
s; see e.g. [63℄and the referen
es therein. Our de�nition of stri
t 
ost-sharing methods in Se
tion 2 issomewhat reminis
ent of well-known 
on
epts in 
ooperative game theory, in
luding the
ore and the nu
leolus. However, we are not aware of any work in the game theory literaturethat studies our notion of stri
t 
ost sharing.Te
hniques from approximation algorithms have re
ently yielded new progress on several
ost-sharing problems [39, 43, 44, 49, 55℄. We believe the present work to be the �rst showingthat ideas from 
ost sharing 
an lead to better approximation algorithms.1.4 Paper OrganizationSe
tion 2 presents our analysis framework, de�nes stri
t 
ost shares, and proves that randomsampling, a Steiner Forest subroutine that admits stri
t 
ost shares, and greedy augmentationleads to a 
onstant-fa
tor approximation algorithm for MRoB. Se
tion 3 applies this frame-work to the SSRoB, MRoB, and MuRoB problems. In Se
tion 4, we build on our SSRoBalgorithm and analysis and design a 
onstant-fa
tor approximation algorithm for the VPNDproblem. Se
tion 5 applies our analysis tools to the SSBaB problem. Se
tions 3{5 all logi
allydepend on the 
on
epts in Se
tion 2. Se
tions 4 and 5 also depend on Subse
tion 3.1, thoughSe
tions 3{5 are otherwise independent. Finally, Se
tion 6 dis
usses re
ent work motivatedby this paper and possible dire
tions for future resear
h.2 The Analysis FrameworkThis se
tion des
ribes our high-level algorithm and analysis framework for the MRoB prob-lem. Subse
tion 2.1 presents our MRoB algorithm. Subse
tion 2.2 bounds its expe
ted 
ostwhen solving a randomly sampled subproblem. Subse
tion 2.3 de�nes stri
t 
ost shares, andSubse
tion 2.4 uses them to bound the expe
ted 
ost of the greedy augmentation step of ourMRoB algorithm.2.1 Random Sampling and Greedy AugmentationOur algorithm for the MRoB problem is given in Figure 1. It �rst randomly samples a subsetof demand pairs, with probabilities proportional to weights and inversely proportional to theratioM of the buying and renting 
osts. It then buys 
apa
ity on edges so that ea
h demandpair in the random sample is 
onne
ted by an in�nite-
apa
ity path. Finally, our algorithmaugments the 
apa
ity of the bought edges by greedily renting 
apa
ity for all demand pairsthat did not parti
ipate in the random sample.The sampling step in Figure 1 is self-explanatory. For the subproblem step, we willemploy an algorithm that is a good approximation algorithm for Steiner Forest and alsosatis�es an additional property that we des
ribe in Subse
tion 2.3 below. We implement theaugmentation step as follows. After the subproblem step, every demand pair (si; ti) in thesubset S is 
onne
ted by a path of (in�nite-
apa
ity) bought edges in F . Let G=F denote7
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Input: an MRoB instan
e (G;D; w;M).1. (Sampling step) Choose a random subset S � D of demand pairs, by in
luding ea
hpair (si; ti) 2 D in S independently with probability minfwi=M; 1g.2. (Subproblem step) Compute a feasible solution F to the Steiner Forest instan
e (G;S),and buy (in�nite) 
apa
ity on the edges of F .3. (Augmentation step) Greedily rent 
apa
ity to produ
e a feasible solution.Figure 1: The algorithm Sample-Augment.the graph obtained from G by 
ontra
ting all of the edges of F . Independently for ea
hdemand pair (si; ti) =2 S, we 
ompute a shortest si-ti path bPi of G=F , and rent wi unitsof 
apa
ity on ea
h edge of bPi that are reserved for ex
lusive use by (si; ti). Ea
h path bPi
orresponds to an si-ti path Pi of G, where ea
h edge of Pi either has in�nite 
apa
ity orhas wi units of 
apa
ity reserved for the demand pair (si; ti). The augmentation step thusinstalls suÆ
ient 
apa
ity for all of the demand pairs to simultaneously route their traÆ
 onthe paths fPigki=1.The following lemma will be used in the next subse
tion and also motivates the Sample-Augment algorithm.Lemma 2.1 For every MRoB instan
e, there is an optimal solution su
h that the 
ow ofea
h demand pair 
an be routed on a single path.Proof: Fix an arbitrary MRoB instan
e (G;D; w;M) and an optimal solution for it. Let Fdenote the edges on whi
h the optimal solution buys in�nite 
apa
ity. This optimal solutionmust also, independently for ea
h demand pair (si; ti), reserve wi units of 
apa
ity on si-tipaths of the 
ontra
ted graph G=F . The minimum-
ost way to a

omplish this is to rentwi units of 
apa
ity for ea
h demand pair (si; ti) on a shortest si-ti path of G=F , as in theaugmentation step of the Sample-Augment algorithm. Applying this augmentation stepto the set F thus results in an optimal solution in whi
h the traÆ
 of ea
h demand pair 
anbe routed on a single path. �The proof of Lemma 2.1 shows that the augmentation step of the algorithm Sample-Augment extends the subproblem solution into a feasible solution in an optimal way. The
rux of the MRoB problem is to identify a good set of edges on whi
h to buy in�nite 
apa
ity.We will show that the random Steiner Forest instan
e de�ned by the sampling step of theSample-Augment algorithm leads to su
h a good set of edges.The rest of this se
tion is devoted to proving that, provided the right type of SteinerForest algorithm is used in the subproblem step, the algorithm Sample-Augment is a goodapproximation algorithm for MRoB. In Se
tion 3 we design algorithms for Steiner Forest thatpossess the requisite properties.
8
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2.2 Bounding the Subproblem CostAlgorithm Sample-Augment in
urs 
ost both in the subproblem step (for buying 
apa
ity)and in the augmentation step (for renting 
apa
ity). We �rst prove a key lemma that is usefulfor bounding both of these 
osts. The lemma states that, in expe
tation, there is a low-
ostsolution to the random Steiner Forest instan
e solved in the subproblem step of the algorithmSample-Augment.Lemma 2.2 For every instan
e I = (G;D; w;M) of MRoB,E [OPTS℄ � OPTMRoBM ; (1)where OPTMRoB is the 
ost of an optimal solution for I, OPTS is the 
ost of an optimalsolution for the Steiner Forest instan
e (G;S), and the expe
tation is over the random sampleS 
hosen in the sampling step of the algorithm Sample-Augment.Proof: Fix an instan
e I of MRoB. We prove (1) by exhibiting one feasible solution for ea
hpossible Steiner Forest instan
e (G;S), su
h that the expe
ted 
ost (over S) of this solutionis at most OPTMRoB=M . Sin
e this goal is only for the analysis, and is independent of thealgorithm Sample-Augment, we 
an freely make use of an optimal solution for I. ByLemma 2.1, we 
an 
onsider an optimal solution that routes all of the traÆ
 of ea
h demandpair (si; ti) 2 D on a single path P �i . For an edge e, let x�e =Pi : e2P �i wi denote the amount
ow routed on the edge e. Let Eb denote the edges e with x�e � M and Er the rest of theedges. The 
ost OPTMRoB of the optimal solution isOPTMRoB = Xe2Eb 
eM + Xe2Er 
ex�e: (2)To prove (1), �x a possible random sample S � D, and de�ne a Steiner forest FS byFS = Eb [ [(si;ti)2S P �i :Note that FS 
onsists of one part (Eb) that does not depend on S, and one part ([(si;ti)2SP �i )that does, and is 
ertainly a feasible solution for the Steiner Forest instan
e (G;S). The 
ostof the �rst part is deterministi
ally 
(Eb) = Pe2Eb 
e, a fa
tor of M less than the 
ostin
urred by the optimal solution for I for buying 
apa
ity on these edges. The expe
ted 
ostof the se
ond part is a fa
tor of M less than the 
ost in
urred by the optimal solution forrenting 
apa
ity, be
ause we in
lude a demand pair (si; ti) in the sample S with probabilityonly wi=M . Formally, we bound the expe
ted 
ost of FS as follows:E [
(FS)℄ = E [
(Eb)℄ +E �
 �Er \ �[(si;ti)2SP �i ���= 
(Eb) + Xe2Er 
e �Pr �e 2 [(si;ti)2sP �i �� 
(Eb) + Xe2Er 
e Xi : e2P �i Pr[(si; ti) 2 S℄= 
(Eb) + Xe2Er 
e x�eM ;9



www.manaraa.com

where the inequality follows from the Union Bound. Thus the expe
ted 
ost of FS is at mostthe 
ost of an optimal solution (2) divided by M . Sin
e E [OPTS℄ � E [
(FS)℄, this provesthe lemma. �Lemma 2.2 easily implies that the expe
ted 
ost of the subproblem step of Sample-Augment is small provided a good approximation algorithm for Steiner Forest is used.Lemma 2.3 If an �-approximation algorithm for Steiner Forest is used in the subproblemstep of Sample-Augment, then the expe
ted 
ost in
urred in this step is at most � timesthe 
ost of an optimal MRoB solution.Proof: Fix an arbitrary instan
e I of MRoB. Let A be the �-approximation algorithm usedin the subproblem step of Sample-Augment. The 
ost in
urred in this step is M timesthat of the Steiner forest F returned by A, sin
e Sample-Augment buys in�nite 
apa
ityon the edges of F . This 
ost is at most M �� �OPTS for every possible random sample S ofdemand pairs. The expe
ted 
ost is thus at most M � � � E [OPTS℄, whi
h by Lemma 2.2 isat most � �OPTMRoB. �The next two subse
tions undertake the more 
hallenging task of bounding the expe
ted
ost of the augmentation step of the Sample-Augment algorithm.2.3 Stri
t Cost SharesOur analysis of the expe
ted 
ost of the augmentation step of the Sample-Augment al-gorithm hinges on a type of 
ost sharing for the Steiner Forest problem. We next de�newhat we 
all stri
t 
ost shares. While our de�nition is motivated solely by our analysis ofSample-Augment, it 
an also be interpreted as formalizing a natural approximate fairness
ondition.The next de�nition states that a 
ost-sharing method is a way of allo
ating 
ost to thedemand pairs of a Steiner Forest instan
e (G;D), with the total 
ost allo
ated bounded aboveby that of a minimum-
ost Steiner forest for (G;D).De�nition 2.4 Let � be a fun
tion that, for every instan
e I = (G;D) of Steiner Forest,assigns a nonnegative real value �(I; (si; ti)) to every demand pair (si; ti) 2 D. The fun
tion� is a (Steiner forest) 
ost-sharing method if, for every su
h instan
e I,X(si;ti)2D�(I; (si; ti)) � OPT (I); (3)where OPT (I) is the 
ost of an optimal solution to I.De�nition 2.4 permits some rather uninteresting 
ost-sharing methods, in
luding thefun
tion that always assigns all demand pairs zero 
ost. The key additional property thatwe require of a 
ost-sharing method is that, intuitively, it allo
ates ea
h demand pair a
ost share 
ommensurate with its distan
e from the edges needed to 
onne
t all of theother demand pairs. Put di�erently, no demand pair 
an be a \free rider," imposing a large10
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burden in building a Steiner forest, but only re
eiving a small 
ost share. We 
all 
ost sharingmethods with this property stri
t. Stri
t 
ost shares will allow us to 
harge, in a demandpair-by-demand pair fashion, a 
onstant fra
tion of the expe
ted 
ost of the augmentationstep of Sample-Augment to the expe
ted 
ost of an optimal solution to the Steiner Forestsubproblem. We have already bounded the latter 
ost in Lemma 2.2.To make this idea pre
ise, we require further notion. Let `G(u; v) denote the length of ashortest path between the verti
es u and v in the graph G (with respe
t to the edge 
ostsof G). As in Subse
tion 2.1, for a graph G and a set of edges F of G, G=F denotes thegraph obtained from G by 
ontra
ting all of the edges of F . As in the augmentation step ofthe algorithm Sample-Augment, the minimum per-unit 
ost of renting 
apa
ity betweensi and ti, given that in�nite 
apa
ity has already been bought on the edges in F , is pre
isely`G=F (si; ti). Our main de�nition is then the following.De�nition 2.5 Let A be a deterministi
 algorithm for the Steiner Forest problem. A Steinerforest 
ost-sharing method � is �-stri
t for A if for all instan
es I = (G;D) and for alldemand pairs (si; ti) 2 D, `G=F (si; ti) � � � �(I; (si; ti));where F is the Steiner forest returned for the instan
e (G;Dnf(si; ti)g) by the algorithm A.Remark 2.6 De�nition 2.4 makes no referen
e to an algorithm for Steiner Forest, but De�-nition 2.5 does. Thus a Steiner forest 
ost-sharing method 
an be �-stri
t for one algorithmand not for another. For example, every 
ost-sharing method is stri
t with respe
t to the(highly suboptimal) algorithm that always returns the entire graph G as the Steiner forest so-lution F . Our 
hallenge will be to give a stri
t 
ost-sharing method for a good approximationalgorithm for Steiner Forest.We say that an algorithm is stri
t if it admits a stri
t 
ost-sharing method.De�nition 2.7 An algorithm A for the Steiner Forest problem is �-stri
t if there exists a
ost-sharing method that is �-stri
t for A.Stri
t 
ost shares will pay dividends in Lemma 2.9 below, where we show that they are thekey property of a Steiner Forest algorithm that allows us to bound the expe
ted augmentation
ost of the algorithm Sample-Augment.Example 2.8 (Prim Cost Shares) We now give an example of a stri
t 
ost-sharing methodfor the spe
ial 
ase of the SSRoB problem, where all demand pairs share the same sink vertext. In this 
ase, the subproblem step is an instan
e (G;S) of Steiner Tree, where we mustoutput a set F of edges spanning t and all of the sour
e verti
es si in demand pairs of S.Suppose we use the well-known MST heuristi
 as our Steiner Tree algorithm A, implementedwith Prim's MST algorithm (see e.g. [62℄). In more detail, we iteratively build up a feasiblesolution to (G;S) as follows. Initially, set D = ftg and F = ;. At ea
h iteration, among allsour
es in a demand pair of S but not in D, �nd the sour
e si 
losest to some sour
e or sinkalready in D; add si to D; and add to F a shortest path between si and its nearest neighborin D. 11
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For an instan
e I = (G;S) of Steiner Tree, de�ne the 
ost share �(I; (si; t)) of (si; t) ashalf of the length of the shortest path used in the iteration of the algorithm that adds si toD. We 
all these Prim 
ost shares. We 
laim that the fun
tion � satis�es both De�nition 2.4and De�nition 2.5 with � = 2. De�nition 2.4 is met be
ause the sum of all of the 
ost sharesis exa
tly half of the 
ost of the Steiner tree output by the MST heuristi
, whi
h in turn isat most twi
e the 
ost of a minimum-
ost Steiner tree (see e.g. [62℄).To see why the 
ost shares � are 2-stri
t for the algorithmA, 
onsider an arbitrary SteinerTree instan
e I = (G;S) and demand pair (si; t) 2 S. Consider running the algorithm Ain parallel on the instan
es I and bI = (G;S n f(si; t)g). The key observation is this: thesetwo exe
utions of A are identi
al, until the demand pair (si; t) of I is 
onsidered. In otherwords, if A 
hooses (si; t) in iteration j � 1 of its exe
ution for the original instan
e I, thenthe partial solution Fj�1 that A has 
onstru
ted after j � 1 iterations is the same in bothexe
utions of the algorithm. Suppose when algorithmA is run on the instan
e I, it 
onne
tssi to Fj�1 via the path P , where P is a shortest path between si and some previously addedsour
e or sink. Sin
e A's �nal solution bF to the instan
e bI in
ludes Fj�1, the shortest-pathdistan
e `G= bF (si; t) is at most the 
ost 
(P ) of P . Sin
e the 
ost share �(I; (si; t)) is pre
isely
(P )=2, De�nition 2.5 is satis�ed with � = 2.2.4 Bounding the Augmentation CostThe de�nition of stri
t 
ost shares is engineered so that the following upper bound on theexpe
ted augmentation 
ost of the algorithm Sample-Augment holds.Lemma 2.9 If a �-stri
t algorithm for Steiner Forest is used in the subproblem step ofSample-Augment, then the expe
ted 
ost in
urred in the augmentation step of Sample-Augment is at most � times the 
ost of an optimal MRoB solution.Proof: Suppose the �-stri
t Steiner Forest algorithm A is used in the subproblem step of thealgorithm Sample-Augment and �x an MRoB instan
e (G;D; w;M). For ea
h demandpair (si; ti) 2 D, we de�ne two random variables. First, the random variable Ri (\renting
ost") has value 0 if (si; ti) is in
luded in the random sample S, and otherwise has value equalto the renting 
ost wi � `G=F (si; ti) 
aused by (si; ti) in the augmentation step, where F is theSteiner Forest solution returned by A for the instan
e (G;S). Se
ond, the random variableBi (\buying 
ost") has valueM ��((G;S); (si; ti)) if (si; ti) is in
luded in the random sampleS and 0 otherwise. Note that the 
ost in
urred by Sample-Augment in the augmentationstep is pre
isely the total renting 
ost PiRi. The total buying 
ost satis�eskXi=1 Bi = X(si;ti)2SM � �((G;S); (si; ti)) �M �OPT (G;S); (4)where the inequality follows from De�nition 2.4. Lemma 2.2 then implies that the expe
tedtotal buying 
ost is at most the 
ost OPTMRoB of an optimal solution to (G;D; w;M):E " kXi=1 Bi# � OPTMRoB: (5)12
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The rest of the proof shows how to use stri
t 
ost shares to 
harge, up to a fa
tor of �, theexpe
ted renting 
ost in
urred by Sample-Augment to the expe
ted buying 
ost.Fix a demand pair (si; ti). Condition on the set S � D n f(si; ti)g of other demand pairsthat Sample-Augment in
ludes in its random sample. Let bS denote S[f(si; ti)g. Thus thesubproblem step will involve either the Steiner Forest instan
e bI = (G; bS) (with probabilityminfwi=M; 1g) or the instan
e I = (G;S) (with the remaining probability). The expe
tedrenting 
ost in
urred by (si; ti), 
onditioned on S, 
an therefore be 
rudely bounded byE [RijS℄ = �1�minnwiM ; 1o� � wi � `G=F (si; ti) � minfwi;Mg � `G=F (si; ti); (6)where F is the output of A for the Steiner Forest instan
e I. The expe
ted buying 
ost isE [BijS℄ = minnwiM ; 1o �M � �(bI; (si; ti)) = minfwi;Mg � �(bI; (si; ti)): (7)Stri
t 
ost shares provide the key relation between renting and buying 
osts. Spe
i�
ally,sin
e A is �-stri
t, inequality (6) and equation (7) imply thatE [RijS℄ � � �E [BijS℄:Sin
e this inequality holds for every set S � D n f(si; ti)g, it also holds un
onditionally:E [Ri℄ � � �E [Bi℄:Linearity of expe
tations and inequality (5) 
omplete the proof:E " kXi=1 Ri# � � �E " kXi=1 Bi# (8)� � �OPTMRoB:� Lemmas 2.3 and 2.9 immediately imply the main result of this se
tion: Sample-Augmentis a good approximation algorithm forMRoB, provided a good, stri
t Steiner Forest algorithmis used in the subproblem step.Theorem 2.10 If a �-stri
t �-approximation algorithm for Steiner Forest is used in thesubproblem step of Sample-Augment, then Sample-Augment is a randomized (� + �)-approximation algorithm for MRoB.3 Rent-or-Buy ProblemsWe next apply the analysis framework of Se
tion 2, and Theorem 2.10 in parti
ular, toseveral rent-or-buy problems. We begin in Subse
tion 3.1 with the spe
ial 
ase of the SSRoBproblem, and show how the results of Se
tion 2 easily give a simple algorithm with a betterperforman
e guarantee than all previously known approximation algorithms for the problem.13
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We then 
onsider the more general MRoB problem. We �rst show (Subse
tion 3.2) thatthe well-known primal-dual 2-approximation approximation algorithm for the Steiner Forestproblem [1, 29℄ does not admit simple O(1)-stri
t 
ost shares. In Subse
tion 3.3 we modifythis algorithm so that it remains an O(1)-approximation algorithm for Steiner Forest and alsoadmits simple O(1)-stri
t 
ost shares, whi
h leads to an O(1)-approximation algorithm forMRoB via Theorem 2.10. Finally, Subse
tion 3.4 extends our MRoB algorithm and analysisto the MuRoB problem.3.1 Single-Sink Rent-or-BuyA good approximation algorithm for the SSRoB problem follows immediately from the Prim
ost shares of Example 2.8 and Theorem 2.10. Spe
i�
ally, in Example 2.8 we argued thatthe MST heuristi
 is a 2-approximation algorithm for the Steiner Tree problem and admits2-stri
t 
ost shares. Theorem 2.10 then implies the following.Theorem 3.1 Algorithm Sample-Augment, with the subproblem step implemented withthe MST heuristi
, is a 4-approximation algorithm for the SSRoB problem.Theorem 3.1 already improves over the previously best algorithm for the SSRoB problem,the primal-dual 4.55-approximation algorithm of Swamy and Kumar [60℄.We 
an a
hieve a slightly better approximation ratio by re�ning De�nition 2.5 and The-orem 2.10 for the SSRoB problem. For the rest of this subse
tion, we 
all a sour
e or sink ofa Steiner Tree instan
e a demand.De�nition 3.2 A Steiner tree 
ost-sharing method � is universally �-stri
t if for all SteinerTree instan
es I = (G;D) and for all demand pairs (si; t) 2 D,`(si; D n fsig) � � � �(I; (si; t));where D denotes the set of demands of I and `(si; D n fsig) the length of a shortest pathbetween si and some other demand.Example 3.3 Re
all that the Prim 
ost shares de�ned in Example 2.8 assign to ea
h de-mand pair (si; t) a 
ost share equal to half of the length of a shortest path between si andsome other demand. This is at least half of the length `(si; D n fsig) of the shortest su
hpath. Prim 
ost shares are therefore universally 2-stri
t.The next lemma justi�es the use of the word \universal" in De�nition 3.2: universallystri
t 
ost shares are stri
t with respe
t to every Steiner Tree algorithm.Lemma 3.4 If � is a universally �-stri
t Steiner tree 
ost-sharing method and A is a SteinerTree algorithm, then � is �-stri
t for A.Proof: To satisfy De�nition 2.5, we must show that `G=F (si; t) � � � �(I; (si; t)) for everySteiner Tree instan
e I = (G;D) and every demand pair (si; t) 2 D, where F is the output14
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of A for the Steiner Tree instan
e (G;D n f(si; t)g). Letting D denote the set of demands ofI, this inequality holds as`G=F (si; t) � `(si; D n fsig) � � � �(I; (si; t));where the �rst inequality follows the fa
t that F must in
lude a path between t and everyother demand in D n fsig, and the se
ond inequality follows from De�nition 3.2. �Theorem 2.10 and Lemma 3.4 immediately give the following result.Theorem 3.5 Suppose there is a universally �-stri
t Steiner tree 
ost sharing method. Ifan �-approximation algorithm for Steiner Tree is used in the subproblem step of Sample-Augment, then Sample-Augment is a randomized (� + �)-approximation algorithm forSSRoB.Theorem 3.5 de
ouples the tasks for �nding a good Steiner Tree approximation algo-rithm and �nding (universally) stri
t 
ost shares. Combining the universally 2-stri
t Prim
ost shares and the 1.55-approximation algorithm for Steiner Tree due to Robins and Ze-likovsky [58℄ then yields a 3.55-approximation algorithm for SSRoB.Corollary 3.6 There is a randomized 3.55-approximation algorithm for the SSRoB problem.Remark 3.7 The same graphs that show that the MST heuristi
 is no better than a 2-approximation algorithm for Steiner Tree (see e.g. [62, Example 3.4℄) prove that for every
onstant � < 2, there is no universally �-stri
t Steiner tree 
ost sharing method. On theother hand, better upper bounds on the approximation ratio of Sample-Augment 
ouldfollow from stri
ter 
ost shares that are not universally stri
t, or from improvements to theupper bound in Theorem 3.5.Remark 3.8 In the proof of Lemma 3.4, we 
ru
ially used the fa
t that every feasiblesolution to a Steiner Tree instan
e is a single 
onne
ted 
omponent. Sin
e di�erent feasiblesolutions to a Steiner Forest instan
e 
an have di�erent sets of 
onne
ted 
omponents, theredo not seem to be useful analogues of De�nition 3.2 and Theorem 3.5 for the Steiner Forestand MRoB problems, respe
tively.3.2 Multi
ommodity Rent-or-Buy: MotivationIn the next subse
tion, we design a 
onstant-fa
tor approximation algorithm for the MRoBproblem. The algorithm, and espe
ially the analysis, will be more involved than in Sub-se
tion 3.1. This subse
tion motivates our algorithm. We �rst review the primal-dual2-approximation algorithm for Steiner Forest due to Agrawal, Klein, and Ravi [1℄ and Goe-mans and Williamson [29℄, whi
h is 
losely related to our Steiner Forest subroutine. We thenpresent an instan
e of MRoB that suggests that the algorithm of [1, 29℄ should be made\more aggressive" to fa
ilitate the de�nition of stri
t 
ost shares (and the appli
ation ofTheorem 2.10). 15
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3.2.1 The AKR-GW AlgorithmWe now review the 2-approximation algorithm for Steiner Forest due to Agrawal, Klein, andRavi [1℄ and Goemans and Williamson [29℄, whi
h we refer to as the AKR-GW algorithm.Our exposition will be similar to that in [29℄. Until very re
ently [49℄, this was the onlyknown 
onstant-fa
tor approximation algorithm for the problem.Fix an instan
e I = (G;D) of Steiner Forest. For a subset S � V of verti
es and ademand pair (si; ti), we say that S separates (si; ti) if S 
ontains exa
tly one of si or ti. Theset S is a Steiner 
ut of I if it separates some demand pair. Let C denote set of Steiner 
utsof I. Finally, let Æ(S) denote the set of edges with exa
tly one endpoint in the vertex setS � V . The AKR-GW algorithm iteratively 
onstru
ts a feasible integral solution to thelinear relaxation min Xe2E 
exesubje
t to:(PLP ) Xe2Æ(S) xe � 1 for every Steiner 
ut S 2 Cxe � 0 for every edge e 2 E;and a feasible solution to the 
orresponding dual linear programmax XS2C ySsubje
t to:(DLP ) XS2C : e2Æ(S) yS � 
e for every edge e 2 EyS � 0 for every Steiner 
ut S 2 C:The 0-1 integer solutions to (PLP ) are pre
isely the in
iden
e ve
tors of the feasiblesolutions of I. By weak linear programming duality (see e.g. [18℄), the obje
tive fun
tionvalue of every feasible (fra
tional) solution to the dual program (DLP ) is a lower bound onthe obje
tive fun
tion value of every feasible (fra
tional) solution to (PLP ), and in parti
ularon the value of a minimum-
ost Steiner forest for (G;D).The AKR-GW algorithm is shown in Figure 2. It maintains a set of edges, initiallyempty; a feasible dual solution, initially the all-zero solution; and a partition of the verti
es,initially with all verti
es in their own 
lass of the partition. Edges in the 
urrent primalsolution are 
alled tight. We will 
all 
lasses of the vertex partition 
lusters. The algorithmwill maintain the invariant that 
lusters 
orrespond to the 
onne
ted 
omponents of the setof tight edges. A 
luster is a
tive if it is a Steiner 
ut and ina
tive otherwise.In every iteration of the �rst part of the AKR-GW algorithm, the dual variables of the
urrently a
tive 
lusters are in
reased by the largest 
ommon amount that does not violateany of the dual pa
king 
onstraints of the form PS2C : e2Æ(S) yS � 
e. (If these dual variables
an be in
reased by an arbitrarily large amount, then the instan
e (G;D) is infeasible.)After this dual in
rease, there is at least one edge whose pa
king 
onstraint is satis�ed with16
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Input: a Steiner Forest instan
e (G;D).1. Initialize all of the dual variables yS to 0 and the 
lusters to the verti
es fvgv2V .2. While there is at least one a
tive 
luster (a 
luster separating some demand pair):(a) Uniformly raise the dual variables of the a
tive 
lusters as mu
h as possible with-out violating dual feasibility.(b) Let e be an edge satisfying PS2C : e2Æ(S) yS = 
e, where the endpoints of e are indistin
t 
lusters, at least one of whi
h is a
tive. De
lare e to be tight.(
) Merge the two 
lusters 
ontaining the endpoints of e into a single 
luster.3. Output the tight edges essential for feasibility.Figure 2: Outline of the AKR-GW algorithm.equality and with endpoints in di�erent 
lusters, at least on
e of whi
h is a
tive. One su
hedge e is then deemed tight, and the two 
lusters 
ontaining the endpoints of e are mergedinto a single 
luster. Note that one of these two old 
lusters 
ould have been ina
tive, andthe new 
luster 
ould be a
tive or ina
tive. Eventually, all 
lusters are ina
tive and thisportion of the algorithm halts.For 
onvenien
e, we asso
iate a notion of time with this phase of the AKR-GW algo-rithm. At the beginning of the algorithm the time � is set to 0. Every time dual variablesare in
reased, the 
urrent time in
reases by the same amount as the dual variables.Ties between di�erent potentially tight edges at a given time 
an be broken arbitrarily.However, we assume throughout this paper, and parti
ularly in Lemma 3.25 below, thatthe AKR-GW algorithm is implemented with a 
onsistent tie-breaking rule (su
h as alexi
ographi
 rule).The �nal and most subtle step of the AKR-GW algorithm identi�es a subset of the tightedges that is a feasible solution and also has low 
ost. Several slightly di�erent implemen-tations of this \delete step" have been proposed [1, 29, 30℄. With an eye toward our SteinerForest algorithm in the next subse
tion, we adopt that of Goemans and Williamson [29℄.Pre
isely, let F denote the set of tight edges. An edge of F is inessential if F n feg is afeasible solution for (G;D), and essential otherwise. The �nal output of the AKR-GWalgorithm is the set of essential tight edges. The algorithm 
an 
learly be implemented inpolynomial time. For fast implementations, see [19, 26, 48℄.It is not immediately obvious that the algorithm AKR-GW outputs a feasible solution,let alone one with low 
ost. Nonetheless, Agrawal, Klein, and Ravi [1℄ and Goemans andWilliamson [29℄ proved the following guarantee.Theorem 3.9 ([1, 29℄) For every Steiner Forest instan
e (G;D), the AKR-GW algorithmoutputs a feasible dual solution fySgS2C and a feasible Steiner forest F � E satisfyingXe2F 
e � 2XS2C yS: (9)17
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Figure 3: Example 3.10. A Steiner Forest instan
e showing that no straightforward 
ost-sharing method for the AKR-GW algorithm is O(1)-stri
t.Sin
e the sum on the right-hand side of (9) is a lower bound on the value of a minimum-
ost Steiner forest of (G;D), Theorem 3.9 implies that the AKR-GW algorithm is a 2-approximation algorithm for the Steiner Forest problem.We will prove a generalization of Theorem 3.9 in Subse
tion 3.3 and Appendix A.3.2.2 A Tri
ky Instan
e for the AKR-GW AlgorithmIn light of Theorem 2.10, a natural idea is to use the AKR-GW algorithm as the SteinerForest subroutine in the Sample-Augment algorithm and attempt to de�ne O(1)-stri
t
ost shares for it. Su
h 
ost shares would give a 
onstant-fa
tor approximation algorithmfor MRoB. Moreover, the dual variables 
onstru
ted by the AKR-GW algorithm suggestthe following family of natural Steiner forest 
ost-sharing methods: when a dual variable ySis in
reased by an additive fa
tor of �, in
rease the 
ost shares of the demand pairs thatare separated by S by at most �, with this in
rease split between these 
ost shares in anarbitrary way. The sum of 
ost shares de�ned in this way is at most the value of the dualfeasible solution 
onstru
ted by the AKR-GW algorithm, whi
h in turn is at most the valueof a minimum-
ost Steiner forest. Su
h 
ost shares thus satisfy De�nition 2.4. But are theystri
t?Our next example shows that no 
ost-sharing s
heme of this type is O(1)-stri
t for theAKR-GW algorithm. Pre
isely, 
all a Steiner forest 
ost-sharing method � straightforwardfor AKR-GW if, for every Steiner Forest instan
e I = (G;D) and every demand pair(si; ti) 2 D, the 
ost share �(I; (si; ti)) is at most the sum of the dual variables yS of theAKR-GW algorithm that 
orrespond to 
lusters S that separate (si; ti). Note that all ofthe 
ost-sharing methods in the aforementioned family are straightforward for AKR-GWin this sense.Example 3.10 Consider the Steiner Forest instan
e I shown in Figure 3, where n is arbitrar-ily large and � < 1=n. We will show that every 
ost-sharing method � that is straightforwardfor AKR-GW is 
(n)-stri
t for AKR-GW.Consider the exe
ution of the AKR-GW algorithm on the instan
e I just after thetime 12 . There are n + 1 
lusters: s1 and t1 are ea
h in an (a
tive) singleton 
luster, and siand ti share an (ina
tive) 
luster for i = 2; 3; : : : ; n. By the time � � = (1 + �n)=2, all of theverti
es lie in the same (ina
tive) 
luster. The maximum 
ost share that 
an be allo
ated to18
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the demand pair (s1; t1) by the straightforward 
ost-sharing method � is 2� � = O(1).Now let bI denote the instan
e (G;Dnf(s1; t1)g) and 
onsider the exe
ution of the AKR-GW algorithm on bI. All 
lusters are ina
tive by the time 12 , and the �nal output of thealgorithm is the set F of unit 
ost edges. The s1-t1 distan
e `G=F (s1; t1) is thus n(1 + �) =
(n). The 
ost-sharing method � is therefore only 
(n)-stri
t.Example 3.10 suggests the following more deli
ate strategies for using Theorem 2.10 to obtaina 
onstant-fa
tor approximation algorithm for the MRoB problem.(1) Modify the AKR-GW algorithm, presumably by for
ing it to build a limited numberof additional edges, so that there is a straightforward 
ost-sharing method that isO(1)-stri
t.(2) Design a non-straightforward O(1)-stri
t 
ost-sharing method for the AKR-GW al-gorithm.In the next subse
tion, we su

essfully pursue the �rst approa
h and obtain a (4 + 2p2)-approximation algorithm for MRoB. Very re
ently, Fleis
her et al. [25℄ followed the se
ondapproa
h and designed a non-straightforward 
ost-sharing method that is 3-stri
t for theAKR-GW algorithm, whi
h by Theorem 2.10 gives a 5-approximation algorithm for MRoB.They also show that for every � < 8=3, there is no �-stri
t 
ost-sharing method for theAKR-GW algorithm.3.3 Multi
ommodity Rent-or-Buy: Algorithm and AnalysisWe now give a 
onstant-fa
tor approximation algorithm for the MRoB problem by designinga 
onstant-fa
tor approximation algorithm for Steiner Forest that admits an O(1)-stri
t 
ost-sharing method. We �rst show how to make the AKR-GW algorithm \more aggressive"in a 
ontrolled way, and then design stri
t 
ost shares for this modi�ed algorithm. Thealgorithm and the 
ost-sharing method are both reasonably simple and are 
losely based onthe AKR-GW algorithm; only the analysis of our algorithm is involved.3.3.1 The 
-AKR-GW AlgorithmTo modify the AKR-GW algorithm to build additional edges, we make two 
hanges. First,we prolong the period of time during whi
h tight edges are identi�ed. Se
ond, we modify thedelete step of the AKR-GW algorithm so that it does not 
ompletely reverse the progressmade in the earlier phase of the algorithm.The �rst modi�
ation is fairly easy to implement by altering the rule used to 
lassify
lusters as a
tive or ina
tive. Re
all that we asso
iate a notion of time with the AKR-GW algorithm, whi
h tra
ks the amounts by whi
h the algorithm in
reases dual variables.For a demand pair (si; ti) of a Steiner Forest instan
e, we let Ti denote its merging time inthe AKR-GW algorithm|the earliest time at whi
h si and ti are 
ontained in a 
ommon
luster. The main idea for a
quiring extra tight edges is to for
e si and ti to remain a
tivefor 
Ti time units for some 
 � 1. 19
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Input: a Steiner Forest instan
e (G;D).1. Run the AKR-GW algorithm and obtain the indu
ed ve
tor T of merging times.2. Initialize all of the dual variables yS to 0; the 
lusters to the verti
es fvgv2V ; and thepartition P to the demands fdgd2D.3. While there is at least one a
tive 
luster (a 
luster that 
ontains a demand si or ti forwhi
h 
 � Ti is at least the 
urrent time):(a) Uniformly raise the dual variables of the a
tive 
lusters as mu
h as possible with-out violating dual feasibility.(b) Let e be an edge satisfying PS2C : e2Æ(S) yS = 
e, where the endpoints of e are indistin
t 
lusters, at least one of whi
h is a
tive. De
lare e to be tight.(
) Merge the two 
lusters 
ontaining the endpoints of e into a single 
luster.(d) Merge the 
lasses of the partition P that 
ontain the a
tive demands in these two
lusters into a single 
lass of P.4. Output the tight edges essential for P-
onne
tivity.Figure 4: Outline of the 
-AKR-GW algorithm.Formally, let (G;D) be an instan
e of Steiner Forest, T the 
orresponding ve
tor of merg-ing times in the AKR-GW algorithm, and 
 � 1 a parameter. Let D denote the set ofdemands (sour
es and sinks) of (G;D). The �rst phase of our algorithm, whi
h we 
all the
-AKR-GW algorithm, is identi
al to that in AKR-GW ex
ept for the de�nition of a
tiveand ina
tive 
lusters. A demand si or ti of D is de�ned to be a
tive if the 
urrent time � isless than or equal to 
Ti and ina
tive otherwise. A 
luster is de�ned to be a
tive if it 
ontainsat least one a
tive terminal and ina
tive otherwise. Note that a 
luster may be a
tive in the
-AKR-GW algorithm even though it separates no demand pair. Tight edges are identi�edand 
lusters are merged as in the AKR-GW algorithm; this phase of the algorithm haltswhen no a
tive 
lusters remain.The 
-AKR-GW algorithm might raise dual variables yS for sets S � V that are notSteiner 
uts and therefore do not parti
ipate in the dual linear program (DLP ). Nevertheless,the algorithm is well de�ned. Our analysis below will bound the 
ontribution of thesearti�
ial dual variables.To implement its delete step, the 
-AKR-GW algorithm maintains a partition P ofthe demands D. Ea
h 
lass of the partition P should be interpreted as a 
olle
tion ofdemands that we want to be mutually 
onne
ted in the output of the algorithm. Initially,ea
h demand lies in a separate 
lass of this partition. When two 
lusters merge, the partition
lasses 
ontaining 
urrently a
tive demands of the 
lusters are merged into a single 
lass ofthe partition P.Lastly, 
onsider the �nal partition P, after all of the 
lusters have be
ome ina
tive. Aset of edges is P-
onne
ted if it 
ontains a path between every pair of demands that lie in a20
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ommon 
lass of P. Let F denote the �nal set of tight edges. A tight edge e is inessential ifF n feg is P-
onne
ted and essential otherwise. The output of the algorithm is the essentialtight edges. The 
-AKR-GW algorithm is summarized in Figure 4.Example 3.11 Suppose we run the 
-AKR-GW algorithm on the Steiner Forest instan
ebI of Example 3.10, say with 
 = 2. All of the demands bD = fs2; : : : ; sn; t2; : : : ; tng remaina
tive until the time 1. As a result, the algorithm 
onstru
ts a spanning tree of tight edgesthat in
ludes all of the unit-
ost edges. In the �nal demand partition P, all of the demandsbD are in a single 
lass. The only tight edges not essential for P-
onne
tivity are (s1; s2)and (sn; t1). The �nal output F of the algorithm is a spanning tree of the demands bD thatin
ludes all of the unit-
ost edges, whi
h is roughly twi
e the 
ost of an optimal solutionof bI. The shortest-path distan
e `G=F (s1; t1) in the 
ontra
ted graph G=F is only 2 + 2�.We next establish that the algorithm outputs a set of edges that is a P-
onne
ted, feasibleSteiner forest. For Lemmas 3.12{3.18 below, �x an arbitrary instan
e I = (G;D) of SteinerForest and a parameter 
 � 1. We begin with the tri
kiest lemma, whi
h demonstrates a
lose 
onne
tion between the 
lusters formed in theAKR-GW and 
-AKR-GW algorithms.This lemma will also play an important role in our analysis of the performan
e guarantee ofthe 
-AKR-GW algorithm. Hen
eforth, we use the notation A(I) to denote the exe
utionof the algorithm A on the input I.Lemma 3.12 At ea
h time � , every 
luster of AKR-GW(I) at time � is a subset of a
luster of 
-AKR-GW(I) at time � .Proof: Call a time � interesting if � = 0 or if two 
lusters are merged in one of the twoalgorithms at time � . There are 
learly only a �nite number of interesting moments in time.Call the time interval between 
onse
utive interesting moments an epo
h. Note that duringan epo
h, the 
lusters of the two algorithms do not 
hange. We will prove the followingstrengthening of the lemma for every interesting moments in time � :(a) every 
luster of the algorithm AKR-GW at time � is a subset of a 
luster of thealgorithm 
-AKR-GW at time � ;(b) if fy�SgS2C and fz�SgS�V denote the dual solutions of the AKR-GW and 
-AKR-GW algorithms at time � , respe
tively, and e is an edge spanning two 
lusters of the
-AKR-GW algorithm at time � , thenXS2C : e2Æ(S) y�S � XS�V : e2Æ(S) z�S:We next prove (a) and (b) by a mutual indu
tion.The lemma 
learly holds when � = 0. For the indu
tive step, 
onsider an interestingtime � > 0. Let e be an edge spanning two 
lusters of the 
-AKR-GW algorithm at thetime � . We 
laim that an endpoint v of e was 
ontained in an a
tive 
luster S of the AKR-GW algorithm during the previous epo
h only if it was 
ontained in an a
tive 
luster of the
-AKR-GW algorithm during this epo
h. This 
laim follows from part (a) of the indu
tive21
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hypothesis, whi
h implies that the 
luster eS of the 
-AKR-GW algorithm 
ontaining v inthis epo
h 
ontains S, and the de�nition of the 
-AKR-GW algorithm, whi
h implies thata demand is a
tive in the AKR-GW algorithm only when it is also a
tive in the 
-AKR-GW algorithm. This 
laim and part (b) of the indu
tive hypothesis prove part (b) of theindu
tive step.For part (a) of the indu
tive step, we need only 
onsider the 
ase where at time �the AKR-GW algorithm merges two 
lusters, S1 and S2. By the indu
tive hypothesis,during the epo
h pre
eding the time � , there were 
lusters eS1 and eS2 of the 
-AKR-GWalgorithm with Si � eSi for i = 1; 2. Sin
e S1 and S2 are merged at time � , there is an edgee 2 Æ(S1) \ Æ(S2) that is de
lared tight at time � . If e is 
ontained in either eS1 or eS2, theneS1 = eS2 sin
e distin
t 
lusters are disjoint. In this 
ase, S1 [ S2 � eS1 whi
h proves part (a).Now suppose that the edge e has exa
tly one endpoint in ea
h of eS1 and eS2. We have alreadyshown that (b) holds at time � , so the dual 
onstraint for e also holds with equality in the
-AKR-GW algorithm. Thus eS1 and eS2 will be merged into a 
ommon 
luster (
ontainingS1 [ S2) by the 
-AKR-GW algorithm at time � , 
ompleting the proof of the indu
tivehypothesis and the lemma. �Lemma 3.12 implies that at every time � , every 
luster of the 
-AKR-GW algorithm isa union of 
lusters of the AKR-GW algorithm. The argument in the proof of Lemma 3.12will reo

ur several times in this se
tion.Next we note two simple lemmas about the demand partition P 
onstru
ted by the
-AKR-GW algorithm. The �rst follows from a straightforward indu
tion on the 
lustermergings of the algorithm.Lemma 3.13 Suppose at some time � in the exe
ution 
-AKR-GW(I), the demandsd1; d2 2 D of I are in a 
ommon 
lass of the 
urrent demand partition. Then d1 andd2 are also in a 
ommon 
luster at time � .The next lemma is a partial 
onverse of Lemma 3.13.Lemma 3.14 Suppose at some time � in the exe
ution 
-AKR-GW(I), the demandsd1; d2 2 D are a
tive and in a 
ommon 
luster. Then d1 and d2 are in a 
ommon 
lassof the demand partition at time � .Proof: The demands d1; d2 were a
tive when their 
lusters �rst merged, at whi
h point thealgorithm 
-AKR-GW merged the 
lasses of P that 
ontained them. �Lemma 3.14 indu
tively implies that when two 
lusters merge, at most two 
lasses of the
urrent demand partition are merged. The next lemma notes that ea
h demand pair o

upiesonly one 
lass of the �nal demand partition 
onstru
ted by the 
-AKR-GW algorithm.Lemma 3.15 Let P be the �nal demand partition 
onstru
ted by the 
-AKR-GW algorithmand (si; ti) a demand pair. The demands si and ti are in the same 
lass of P.Proof: Let Ti denote the merging time of si and ti in AKR-GW(I). By Lemma 3.12, thedemands si and ti will reside in a 
ommon 
luster of 
-AKR-GW(I) at or before time Ti.22
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Sin
e 
 � 1, this 
luster is a
tive at time Ti. Lemma 3.14 then implies that si and ti sharethe same 
lass of the demand partition P. �Lemma 3.15 implies that if P is the �nal demand partition of the algorithm 
-AKR-GW,then every P-
onne
ted solution is also a feasible Steiner forest for I. The next lemma provesthat the set of tight edges 
onstru
ted by the 
-AKR-GW algorithm forms a P-
onne
tedsolution.Lemma 3.16 Let F be the set of tight edges and P the demand partition at the 
on
lusionof the 
-AKR-GW algorithm. Then F is P-
onne
ted.Proof: Suppose the demands d1; d2 2 D lie in the same 
lass of the �nal partition P. ByLemma 3.13, the demands d1 and d2 lie in the same 
luster. Sin
e the 
-AKR-GW algorithmmaintains the invariant that the 
lusters 
orrespond pre
isely to the 
onne
ted 
omponentsof the set of tight edges, there is a path of tight edges between d1 and d2. �Finally, we show that the algorithm's delete step does not destroy P-
onne
tivity. Ourargument is essentially due to Goemans and Williamson [29℄; we in
lude the details for 
om-pleteness. As a preliminary step, we note that the 
-AKR-GW algorithm never 
onstru
tsa 
y
le of tight edges.Lemma 3.17 The �nal set F of tight edges 
onstru
ted by the algorithm 
-AKR-GW isa
y
li
.Proof: Suppose for 
ontradi
tion that at some point in the exe
ution of the 
-AKR-GWalgorithm, an edge e = (v; w) is de
lared tight and 
reates a 
y
le C of tight edges. Immedi-ately prior to e being de
lared tight, there was a v-w path C n feg of tight edges. But thenv and w would have been in the same 
luster at this point in the algorithm, ruling out theedge e as a 
andidate to be
ome tight. �Lemma 3.18 The 
-AKR-GW algorithm outputs a P-
onne
ted solution, where P is the�nal demand partition 
onstru
ted by the algorithm.Proof: Let F be the �nal set of tight edges, whi
h is P-
onne
ted by Lemma 3.16 and a
y
li
by Lemma 3.17. Let d1; d2 2 D be an arbitrary pair of demands in a 
ommon 
lass of P.Sin
e F is a
y
li
, there is a unique d1-d2 path P of tight edges. Ea
h edge of P is thereforeessential and will not be deleted by the 
-AKR-GW algorithm. Thus the set of essentialtight edges is P-
onne
ted. �Lemmas 3.15 and 3.18 imply that the 
-AKR-GW algorithm always outputs a feasibleSteiner forest.3.3.2 Performan
e Guarantee of the 
-AKR-GW AlgorithmOur next goal is to show that for every 
 � 1, the 
-AKR-GW algorithm is a (
 + 1)-approximation algorithm for the Steiner Forest problem. The main 
hallenge, as alluded toabove, is to a

ount for the 
ontribution of the arti�
ial dual variables (yS for non-Steiner23
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uts S). Our �rst lemma bounds the 
ost of the Steiner forest output by the 
-AKR-GWin terms of both the legitimate and the arti�
ial dual variables. The proof is essentially dueto Goemans and Williamson [29℄. For 
ompleteness, we in
lude the proof in Appendix A.Lemma 3.19 For every Steiner Forest instan
e (G;D) and 
 � 1, the 
-AKR-GW algo-rithm outputs a dual solution fzSgS�V and a feasible Steiner forest F � E satisfyingXe2F 
e � 2XS�V zS: (10)The next lemma proves that the obje
tive fun
tion value of the (infeasible) dual solutionprodu
ed by the 
-AKR-GW algorithm is only a (
 +1)=2 fa
tor larger than the (feasible)dual solution produ
ed by the AKR-GW algorithm.Lemma 3.20 Let (G;D) be an instan
e of Steiner Forest, fySgS2C the feasible dual solutionprodu
ed by the AKR-GW algorithm, and fzSgS�V the dual solution produ
ed by the 
-AKR-GW algorithm. Then XS�V zS � 
 + 12 XS2C yS:Proof: We split the dual solution fzSgS�V into two parts and bound ea
h part separately. Tode�ne this split, let Ti denote the merging time of si and ti in the AKR-GW algorithm|theearliest time that they are in the same 
luster. If the dual variable zS is in
reased by the
-AKR-GW algorithm at a time � less than Ti for some demand si or ti 
ontained in S,then this in
rease 
ontributes to the part z(1)S ; otherwise it 
ontributes to the part z(2)S . Putdi�erently, the z(1)S part of the dual variable is in
reased until the time at whi
h all demandsin S be
ome ina
tive in the AKR-GW algorithm; thereafter, the z(2)S part is in
reased. Ata given time � , we a

ordingly 
lassify an a
tive 
luster S of the 
-AKR-GW algorithm aseither good or bad.The lemma will follow immediately from the following two inequalities:XS�V z(1)S �XS2C yS (11)and XS�V z(2)S � 
 � 12 XS2C yS: (12)We 
an prove (11) by de�ning, for every time � , an inje
tive mapping from the good a
tive
lusters of the 
-AKR-GW algorithm at time � to the a
tive 
lusters of the AKR-GWalgorithm at time � . Fix a time � and a good a
tive 
luster eS of the 
-AKR-GW algorithmat time � . By the de�nition of good, the 
luster eS 
ontains a demand d 2 D that is in ana
tive 
luster S of the AKR-GW algorithm at the time � ; map eS to S. Lemma 3.12 impliesthat this mapping sends ea
h a
tive 
luster of the 
-AKR-GW algorithm at time � to oneof its subsets. It is therefore inje
tive, whi
h 
ompletes the proof of (11).To prove (12), order the demands a

ording to in
reasing merging times in theAKR-GWalgorithm. For 
onvenien
e, we insist that the two demands of a demand pair (si; ti)|whi
h24
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have equal merging time|are 
onse
utive in the ordering, with the sour
e si �rst. We breakother ties arbitrarily. For a demand d 2 D, we will 
all a 
luster S of the AKR-GW or
-AKR-GW algorithm a d-
luster if d is the last demand in S. For a demand d 2 D, letYd denote the sum of the dual variables yS for d-
lusters S of the AKR-GW algorithm.Similarly, let Zd denote the sum of the variables z(2)S for bad d-
lusters S of the 
-AKR-GW algorithm. We 
all a demand pair (si; ti) good if Zsi = Zti = 0 and bad otherwise.Let B � D denote the bad demand pairs. Note that P(si;ti)2B(Zsi + Zti) = PS�V z(2)S andPd2D Yd =PS2C yS.We will establish the following four inequalities for every bad demand pair (si; ti) 2 B:Zsi = 0; (13)Zti � (
 � 1)Ti; (14)Ysi � Ti; (15)Yti � Ti: (16)These imply thatXS�V zS = X(si;ti)2B(Zsi + Zti) � (
 � 1) X(si;ti)2B Ti � 
 � 12 Xd2D Yd = 
 � 12 XS2C yS;whi
h will 
omplete the proof of the lemma.Let (si; ti) 2 B be a bad demand pair with Zd > 0 for d 2 fsi; tig. Let eS and S bethe 
lusters of the 
-AKR-GW and AKR-GW algorithms, respe
tively, that 
ontain thedemand d at the merging time Ti, after all 
luster mergings at this time have been performedby the algorithms. By the de�nition of Ti, the 
luster S 
ontains both si and ti, and si andti were in separate 
lusters of the AKR-GW algorithm at all previous moments in time.Also, by Lemma 3.12, eS 
ontains both si and ti at time Ti. Sin
e ti follows si in the orderingof demands, a 
luster of the 
-AKR-GW algorithm 
an only be an si-
luster at time � if� < Ti, and su
h 
lusters 
an only be good. This proves (13) and implies that d = ti.Next, sin
e Zti > 0, the 
luster eS must be a ti-
luster at the time Ti. Sin
e S is a subsetof eS 
ontaining ti, it is also a ti-
luster at the time Ti. Moreover, every 
luster of the AKR-GW algorithm that 
ontains a demand d 2 fsi; tig at a time � < Ti is a d-
luster. Sin
eevery su
h 
luster is a
tive in the AKR-GW algorithm, inequalities (15) and (16) follow.Finally, we upper bound Zti. By the de�nition of the 
-AKR-GW algorithm, a ti-
luster
an only be a
tive at time � if � � 
 � Ti. On the other hand, su
h a 
luster 
an only be badat time � if � � Ti. Sin
e only one 
luster of the 
-AKR-GW algorithm 
ontains ti at agiven moment in time, Zti � (
 � 1)Ti. This proves (14) and the lemma. �Sin
e the feasible dual solution 
onstru
ted by the AKR-GW algorithm is a lower boundon the value of a minimum-
ost Steiner forest, Lemmas 3.19 and 3.20 imply the followingapproximation ratio for the 
-AKR-GW algorithm.Theorem 3.21 For every 
 � 1, the 
-AKR-GW algorithm is a (
 + 1)-approximationalgorithm for the Steiner Forest problem. 25
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Remark 3.22 A preliminary version of this work [34℄ 
ontained a weaker version of The-orem 3.21, whi
h 
laimed an approximation ratio of 2
 for the 
-AKR-GW algorithm.Subsequent to [34℄, Be

hetti et al. [12℄ proposed a di�erent way to for
e the AKR-GWalgorithm to build additional edges. They proved that, for a �xed value of a parameter
 � 2, their algorithm is a (
 + 1)-approximation algorithm and admits [2
=(
 � 1)℄-stri
t
ost shares. While the arguments in [12℄ do not seem to 
arry over to the 
-AKR-GW al-gorithm, this result nevertheless inspired us to revisit Theorem 3.21 and prove the improvedapproximation ratio of 
 + 1 with a new proof.3.3.3 Stri
t Cost Shares for the 
-AKR-GW AlgorithmFinally, we prove that the 
-AKR-GW algorithm is O(1)-stri
t provided 
 � 2. To de�neour 
ost shares, we introdu
e some new terminology. A Steiner 
ut of a Steiner Forestinstan
e separates a demand d if it does not 
ontain the other demand of d's demand pair. ASteiner 
ut is d-isolating if it separates d and no other demand. We then use the AKR-GWalgorithm to de�ne our 
ost shares as follows.De�nition 3.23 (Isolated Cost Shares) Let I = (G;D) be a Steiner Forest instan
e. LetfySgS2C be the dual solution 
onstru
ted by the AKR-GW algorithm for I. For a demandd 2 D, let Cd denote the d-isolating Steiner 
uts of I. The isolated 
ost share �(I; d) of ademand d 2 D isPS2Cd yS. The isolated 
ost share �(I; (si; ti)) of a demand pair (si; ti) 2 Dis �(I; si) + �(I; ti).In De�nition 3.23, every Steiner 
ut 
an 
ontribute to the 
ost share of at most one demand.The sum of the isolated 
ost shares for a Steiner Forest instan
e is therefore at most the valueof the dual solution 
onstru
ted by the AKR-GW algorithm, whi
h in turn is at most thevalue of a minimum-
ost Steiner forest. Isolated 
ost shares are thus a 
ost-sharing methodin the sense of De�nition 2.4. Isolated 
ost shares are also straightforward in the sense ofExample 3.10. Our goal is the following theorem.Theorem 3.24 For every 
 � 2, the isolated 
ost shares are 2

�1-stri
t for the 
-AKR-GWalgorithm.Our proof of Theorem 3.24 requires a number of steps. We remind the reader that Se
tions 4and 5 do not depend on any of the ideas in the following proof.First, �x 
 � 2, a Steiner Forest instan
e I = (G;D), and a demand pair (si; ti) 2 D. LetbI denote the Steiner Forest instan
e (G;D n f(si; ti)g). Let D and bD = D n fsi; tig denotethe sets of demands of I and bI, respe
tively. We need to show that`G=F (si; ti) � � � �(I; (si; ti)); (17)where � is the isolated 
ost share of (si; ti) in I, F is the Steiner forest returned by theexe
ution 
-AKR-GW(bI), and � = 2
=(
 � 1).One main obsta
le to proving Theorem 3.24 lies in relating the behavior of the AKR-GWand 
-AKR-GW algorithms on the instan
es I and bI, respe
tively. Despite the similarities26
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between the two instan
es and the two algorithms, the exe
utions AKR-GW(I) and 
-AKR-GW(bI) 
ould be dramati
ally di�erent. Indeed, the diÆ
ulty of understanding thesensitivity of primal-dual algorithms to small perturbations of the input is well known, andhas been studied in detail in other 
ontexts by Garg [27℄ and Charikar and Guha [14℄. Wenext aim to partially avoid the detailed analyses of [14, 27℄ by transforming the instan
es Iand bI. We emphasize that these transformations are only for our analysis, and in parti
ularfor the proof of Theorem 3.24.We �rst modify the exe
ution of the 
-AKR-GW algorithm on bI so that it behavesmore similarly to AKR-GW(I). Let T and bT denote the ve
tors of demand pair mergingtimes in the exe
utions AKR-GW(I) and AKR-GW(bI), respe
tively. By de�nition, 
-AKR-GW(bI) uses the ve
tor 
 bT to 
lassify demands and 
lusters as a
tive or ina
tive. Themodi�ed exe
ution of 
-AKR-GW(bI) instead uses the ve
tor 
T (restri
ted to the demandset bD of bI) for these 
lassi�
ations. The next several lemmas show that the inequality (17)is only more diÆ
ult to show for the modi�ed exe
ution of 
-AKR-GW(bI) than for theoriginal exe
ution. We begin with a monotoni
ity result, similar to Lemma 3.12, whi
h statesthat up to its merging time Ti, the addition of the demand pair (si; ti) 
an only in
rease therate of growth of 
lusters in the AKR-GW algorithm.Lemma 3.25 For every time � � Ti, every 
luster of AKR-GW(bI) at time � is a subsetof a 
luster of AKR-GW(I) at time � .Proof: The proof is nearly identi
al to that of Lemma 3.12, with AKR-GW(I) playing therole of the 
-AKR-GW algorithm in the latter proof. The only statement in the proof ofLemma 3.12 whi
h requires a new argument here is the following: if the vertex v is in thea
tive 
luster eS in AKR-GW(bI) at time � < Ti and the 
luster S � eS in AKR-GW(I) attime � , then S is also a
tive at this time. If S 
ontains si or ti, then S is a
tive at time � bythe de�nition of the merging time Ti. Otherwise, assuming that the AKR-GW algorithmis implemented with a 
onsistent tie-breaking rule (see Subse
tion 3.2), the 
lusters thatdo not 
ontain si or ti are always identi
al in the two exe
utions. This fa
t follows from astraightforward indu
tion on the 
luster mergings of the two exe
utions. Thus if S 
ontainsneither si nor ti, then S = eS and S is a
tive at time � , 
ompleting the proof. �Lemma 3.25 implies that demand pairs that merge before time Ti in AKR-GW(bI) 
anonly merge earlier in AKR-GW(I).Corollary 3.26 For every demand pair (sj; tj) 2 D n f(si; ti)g with bTj � Ti, Tj � bTj.Proof: By de�nition, sj and tj are in a 
ommon 
luster of AKR-GW(bI) at time bTj. IfbTj � Ti, then Lemma 3.25 implies that they are also in a 
ommon 
luster at time bTj inAKR-GW(I), and hen
e Tj � bTj. �Corollary 3.26 immediately implies that bTj � minfTi; Tjg for every demand pair (sj; tj) 2D n f(si; ti)g. It also leads to the next lemma, whi
h states that 
lusters in the originalexe
ution of 
-AKR-GW(bI) are only larger than in its modi�ed exe
ution.27
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Lemma 3.27 For every time � � 
Ti, every 
luster of the modi�ed exe
ution of 
-AKR-GW(bI) at time � is a subset of a 
luster of its original exe
ution at time � .Proof: As in the proof of Lemma 3.25, we only need to show that if a vertex v is in an a
tive
luster eS at time � � 
Ti in the modi�ed exe
ution and in a 
luster S � eS in the originalexe
ution at time � , then S is an a
tive 
luster. Sin
e eS is a
tive, it 
ontains a demandd 2 fsj; tjg with � � 
Tj. Sin
e � � 
 �minfTi; Tjg, Corollary 3.26 implies that d and hen
eS are also a
tive at time � in the original exe
ution of 
-AKR-GW(bI), whi
h 
ompletesthe proof. �A similar result holds for the demand partitions of the original and modi�ed exe
utionsof 
-AKR-GW(bI).Lemma 3.28 For every time � � 
Ti, every 
lass of the demand partition of the modi�edexe
ution of 
-AKR-GW(bI) at time � is a subset of a 
lass of the demand partition of itsoriginal exe
ution at time � .Proof: We pro
eed by indu
tion on the 
luster mergings of the modi�ed exe
ution of 
-AKR-GW(bI). The lemma 
learly holds before any 
luster mergings have o

urred. For theindu
tive step, 
onsider a time � � 
Ti when the modi�ed exe
ution merges the 
lusters eS1and eS2. Sin
e no partition 
lasses are merged unless both 
lusters are a
tive, we 
an assumethat eS1 and eS2 
ontain a
tive demands at time � . By Lemma 3.14, the a
tive demandsof eSj are 
ontained in a single demand partition 
lass eCj at time � for j = 1; 2. By theindu
tive hypothesis, there are partition 
lasses C1; C2 in the original exe
ution at time �with eCj � Cj for j = 1; 2. After eS1 and eS2 are merged, eC1 and eC2 are merged into a single
lass eC1 [ eC2. Lemma 3.27 implies that after all 
luster mergings of the original exe
utionat time � have o

urred, there is a 
luster S of the original exe
ution that 
ontains eS1 [ eS2.As in the proof of Lemma 3.27, sin
e � � 
Ti, Corollary 3.26 implies that every demandthat is a
tive at time � in the modi�ed exe
ution is also a
tive in the original exe
ution atthis time. The 
luster S thus 
ontains a
tive demands from both eC1 � C1 and eC2 � C2. ByLemma 3.14, these demands must be in the same partition 
lass after the 
luster mergingsof the original exe
ution of 
-AKR-GW(bI) at time � , and this partition 
lass must 
ontainC1 [ C2 � eC1 [ eC2. The indu
tive step and the lemma are proved. �Let P� denote the demand partition of the modi�ed exe
ution of 
-AKR-GW(bI) at thetime 
Ti. Call the demands of a single 
lass of the partition P� a P�-group. Re
all that thedemand set bD of bI is D n fsi; tig. In parti
ular, neither si nor ti lies in any P�-group.Obtain the graph H from G by, for every P�-group, identifying the set of verti
es hostingdemands from this group into a single vertex. Note that while H typi
ally has a smallervertex set than G, it has the same edge set and edge 
osts as G. The next lemma relatesshortest si-ti paths in H to those in G=F , where F is the Steiner forest returned by theoriginal exe
ution of 
-AKR-GW(bI).Lemma 3.29 Let F be the Steiner forest returned by the original exe
ution of 
-AKR-GW(bI). Then `G=F (si; ti) � `H(si; ti);28
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where `H(si; ti) denotes the value of a minimum-
ost si-ti path in the graph H.Proof: Lemmas 3.16 and 3.28 imply that the output of the original exe
ution of 
-AKR-GW(bI) is a P�-
onne
ted Steiner forest F , 
ontaining a path between every two demandsthat lie in a 
ommon P�-group. All demands of a P�-group therefore reside in a single nodeof the 
ontra
ted graph G=F . Every si-ti path in H thus 
orresponds to one of no greaterlength in G=F , whi
h proves the lemma. �Lemma 3.29 
ompletes the �rst part of our proof of Theorem 3.24 and redu
es the theoremto showing that `H(si; ti) � � � �(I; (si; ti)); (18)where � = 2
=(
 � 1).We will prove (18) by, 
on
eptually, rerunning the AKR-GW and 
-AKR-GW algo-rithms on the instan
es IH = (H;D) and bIH = (H;D n f(si; ti)g), respe
tively. While thesetwo new exe
utions behave similarly to their analogues with the original graph G|as weshow below|the inequality (18) is easier to establish for the instan
es IH and bIH than forI and bI.As before, for the analysis we need to modify the exe
utionsAKR-GW(IH) and 
-AKR-GW(bIH) to use the merging times T of AKR-GW(I). Pre
isely, we make the followingde�nitions, whi
h are 
ru
ial for the following analysis.� The modi�ed exe
ution of AKR-GW(IH) deems a 
luster S a
tive at time � if andonly if S 
ontains a demand sj or tj of D with � � Tj (as opposed to if S separatessome demand pair of D).� The modi�ed exe
ution of 
-AKR-GW(bIH) deems a 
luster S a
tive at time � if andonly if S 
ontains a demand sj or tj of bD with � � 
Tj (as opposed to using themerging times of demand pairs in AKR-GW(bIH)).Hen
eforth, we abuse notation and use AKR-GW(IH) and 
-AKR-GW(bIH) to denotethese modi�ed exe
utions.We �rst show that the isolated 
ost share �(IH ; (si; ti)) a

rued by (si; ti) in AKR-GW(IH) is at most that in AKR-GW(I). For this result, we need an auxiliary lemma. Init, we say that a 
luster ~S of H in
ludes a 
luster S of G if every vertex of S is mapped to avertex of ~S under the vertex identi�
ation map used to obtain H from G. In parti
ular, if~S in
ludes S, then all demands 
ontained in S are also 
ontained in ~S.Lemma 3.30 For every time � , every 
luster of AKR-GW(I) at time � is in
luded insome 
luster of AKR-GW(IH) at time � .The proof of Lemma 3.30 is almost identi
al to that of Lemma 3.12, and we omit furtherdetails.We now 
ompare the original isolated 
ost share �(I; (si; ti)) to its analogue in IH . Re
allthat demands are deemed a
tive or ina
tive in AKR-GW(IH) based on the merging timesT rather than on the separated demand pairs. We a

ordingly say that a 
luster S of AKR-GW(IH) isolates the demand d at time � if d is the sole a
tive demand in S at the time � .29
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The 
ost share �� of (si; ti) in IH is then de�ned as the total amount of time that si and tispend in isolating 
lusters in AKR-GW(IH).Lemma 3.31 Let �� denote the total amount of time that si and ti spend in isolating 
lustersin AKR-GW(IH). Then �� � �(I; (si; ti)):Proof: First, observe that by the de�nition of (the modi�ed exe
ution of) AKR-GW(IH)and the meeting time Ti in AKR-GW(I), a demand is a
tive at time � in one exe
ution ifand only if it is a
tive at time � in the other exe
ution. Next, suppose that d 2 fsi; tig isin an a
tive, isolating 
luster ~S in AKR-GW(IH) at time � . The 
luster S that 
ontains din AKR-GW(I) at time � must then also be a
tive. Moreover, Lemma 3.30 implies that S
ontains only fewer demands than ~S at time � , and is thus also d-isolating. Sin
e ea
h of siand ti is only in an a
tive, isolating 
luster at time � in AKR-GW(IH) when it is in su
h a
luster at time � in AKR-GW(I), the isolating 
ost share of (si; ti) in the former exe
utionis at most that in the latter. �Next, by Lemma 3.30, si and ti are �rst 
ontained in the same 
luster of AKR-GW(IH)at some time T �i � Ti. Sin
e 
lusters 
orrespond to 
onne
ted 
omponents of tight edges,at time T �i there is an si-ti path P of H that 
omprises only tight edges. Moreover, a
tive
lusters of AKR-GW(IH) 
an only interse
t this path in a restri
ted way.Lemma 3.32 If the 
luster S is a
tive at time � in AKR-GW(IH), then the verti
es thatlie in both S and P appear 
onse
utively on P .Proof: Suppose for 
ontradi
tion that there are verti
es u; v; w on P , with v between u andw on P , su
h that u; w 2 S and v =2 S. Sin
e 
lusters 
orrespond to 
onne
ted 
omponentsof tight edges, there is a u-w path Q1 of tight edges in
ident only to verti
es in S at time� in AKR-GW(IH). On the other hand, at time T �i there is a u-w path Q2 of tight edgesin
ident to the vertex v =2 S|the u-w subpath of P . By the time maxf�; T �i g, all of theedges in Q1 [Q2 are tight in AKR-GW(IH), at whi
h point there is a 
y
le of tight edges.Sin
e this 
ontradi
ts Lemma 3.17, the proof is 
omplete. �We will use the path P as a proxy for the shortest si-ti path in H. This 
ompletes these
ond part of our proof of Theorem 3.24, and redu
es the theorem to showing that theisolated 
ost share �� of (si; ti) in AKR-GW(IH) re
overs a signi�
ant fra
tion of the 
ostof the path P .For the next part of the proof, we will need to make a 
areful 
omparison of the dualvariables in AKR-GW(IH) and 
-AKR-GW(bIH). We 
all a moment � of time interestingif two 
lusters merge in AKR-GW(IH) at time � , if two 
lusters merge in 
-AKR-GW(bIH)at time 
� , or if � equals the merging time Ti of some demand pair (si; ti) in AKR-GW(I).An epo
h of the former exe
ution is an interval of time between 
onse
utive interestingmoments. Epo
hs of the latter exe
ution are the same intervals, s
aled by a fa
tor of 
.There is thus a natural bije
tion between the jth epo
hs of the two algorithms (for all j),whi
h will play a 
entral role in our argument. Additionally, the sets of a
tive and ina
tive
lusters of AKR-GW(IH) and 
-AKR-GW(bIH) remain un
hanged during an epo
h.30
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Our �rst lemma follows immediately from the de�nitions of (the modi�ed exe
utions of)AKR-GW(IH) and 
-AKR-GW(bIH).Lemma 3.33 For demand d 2 D n fsi; tig and time � � 0, d is a
tive at time � in AKR-GW(IH) if and only if it is a
tive in 
-AKR-GW(bIH) at time 
� .Next, we show that the 
lusters of 
-AKR-GW(bIH) 
an only have a very restri
ted formbefore time 
T �i . We again require an auxiliary monotoni
ity lemma, whi
h relates 
lustersof 
-AKR-GW(bIH) ba
k to those of the modi�ed exe
ution of 
-AKR-GW(bI) that wasused to de�ne the graph H.Lemma 3.34 Suppose the edge e is 
ontained in a single 
luster of 
-AKR-GW(bIH) atthe time � . Then e is also 
ontained in a single 
luster of the modi�ed exe
ution of 
-AKR-GW(bI) at time � .Proof: The indu
tive proof is very similar to that of Lemma 3.12, and we omit most of thedetails. The only additional fa
t required for the present proof is the following: if the lemmaholds at time � and a vertex v of H is in an a
tive 
luster at time � in 
-AKR-GW(bIH),then the 
orresponding vertex ~v of G is in an a
tive 
luster of the modi�ed exe
ution of
-AKR-GW(bI) at the time � . We now prove this fa
t. Sin
e v is in an a
tive 
luster S ofH at time � and 
lusters 
orrespond to 
onne
ted 
omponents of tight edges, there is pathof tight edges in S from v to a vertex w that 
ontains a demand d1 2 D n fsi; tig that isa
tive at time � . Sin
e the lemma holds at time � , there is a 
luster ~S of G of the modi�edexe
ution of 
-AKR-GW(bI) at this time that 
ontains verti
es ~v and ~w that 
orrespondto v and w, respe
tively. By the de�nition of the graph H, there is at least one demandd2 2 D nfsi; tig at the vertex ~w that is in d1's P�-group. Let P denote the demand partitionof the modi�ed exe
ution of 
-AKR-GW(bI) at the time � . (Re
all that P� is de�ned as thedemand partition of this exe
ution at the time 
Ti.) By Lemma 3.13, every demand in d2'sP-group A is 
ontained in ~S at time � . We 
an �nish the proof the lemma by showing thatsome demand in the set A is a
tive at time � in the modi�ed exe
ution of 
-AKR-GW(bI).Suppose for 
ontradi
tion that all demands of A are ina
tive at the time � . First, sin
ed1 is a
tive in 
-AKR-GW(bIH) at time � , it is also a
tive in the modi�ed exe
ution of
-AKR-GW(bI) at time � and thus d1 =2 A. Se
ond, by the de�nition of the 
-AKR-GWalgorithm, the P-group A will never merge with any other P-group after the time � . Thesetwo 
onsequen
es 
ontradi
t the fa
t that d1 and d2 lie in the same P�-group of the modi�edexe
ution of 
-AKR-GW(bI) at the time 
Ti, 
ompleting the proof of the lemma. �Now we prove that the 
lusters of 
-AKR-GW(bIH) at a time � < 
T �i are simple.Lemma 3.35 Suppose S is an a
tive 
luster of 
-AKR-GW(bIH) at the time � < 
T �i .Then S 
ontains a
tive demands from only one P�-group.Proof: Suppose for 
ontradi
tion that S 
ontains a
tive demands d1; d2 from di�erent P�-groups. Sin
e S 
orresponds to a 
onne
ted 
omponent of tight edges, S 
ontains an d1-d2path. By Lemma 3.34, this path (and hen
e d1 and d2) is 
ontained in a single 
luster of themodi�ed exe
ution of 
-AKR-GW(bI) at time � . By the de�nition of the modi�ed exe
utions31
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of 
-AKR-GW(bI) and 
-AKR-GW(bIH), d1 and d2 are also a
tive in the modi�ed exe
utionof 
-AKR-GW(bI) at this time. But then Lemma 3.14 implies that d1 and d2 are in thesame P�-group, a 
ontradi
tion. �We next show that the a
tive 
lusters of AKR-GW(IH) are almost as simple before timeT �i . The following auxiliary lemma is where we use the standing assumption that 
 � 2. Itroughly states that the missing 
luster growth due to the absen
e of the demands si and tifrom the instan
e bIH 
an be made up for by growing the other demands for twi
e as long.Lemma 3.36 Suppose the demands d1 2 fsi; tig and d2 2 D n fsi; tig are a
tive and in thesame 
luster of AKR-GW(IH) at the time � < T �i . Then d1 and d2 are in the same 
lusterof 
-AKR-GW(bIH) at the time 2� .Proof: By symmetry, we 
an assume that d1 = si. Sin
e 
lusters 
orrespond to 
onne
ted
omponents of tight edges, there is an si-d2 path Q of tight edges at time � in AKR-GW(IH). Let fySgS�V denote the dual variables at this time; thus PS�V : e2Æ(S) yS = 
e forall e 2 Q. We 
laim that the edges of Q are nearly tight at time � in 
-AKR-GW(bIH) inthe following sense: Xe2Q XS�V : e2Æ(S) zS � 
(Q)� �; (19)where 
(Q) is the 
ostPe2Q 
e of Q and fzSgS�V are the dual variables in 
-AKR-GW(bIH)at time � .We �rst 
laim that if S is subset of the vertex set of H with ti 2 S and P \ Æ(S) 6= ;,then yS = 0. Indeed, if yS > 0 for su
h a 
luster S, then S is a
tive at or before time � ,whi
h implies that by time � there is a set of tight edges from ti to Q. But then si and ti are
onne
ted by a path of tight edges at time � in AKR-GW(IH) and are hen
e in the same
luster, whi
h 
ontradi
ts the assumption that � < T �i .Next 
onsider the 
lusters that 
ontain neither si nor ti. As in the proof of Lemma 3.25, astraightforward indu
tion shows that the sets of su
h 
lusters are identi
al inAKR-GW(IH)and 
-AKR-GW(bIH) at all times. Thus zS = yS for all su
h 
lusters S. Lastly, the sum ofthe dual variables yS of 
lusters S that 
ontain si is exa
tly � , and Lemma 3.32 implies thatea
h of su
h 
luster with yS > 0 only 
ontributes to the pa
king 
onstraint of a single edgeof P . Inequality (19) follows.Finally, in 
-AKR-GW(bIH), the 
luster 
ontaining d2 will interse
t the path Q until siand d2 are in the same 
luster or until d2 be
omes ina
tive. Sin
e 
 � 2 and d2 is a
tiveat time � in AKR-GW(IH), d2 is a
tive at time 2� in 
-AKR-GW(bIH). Inequality (19)implies that d2's (a
tive) 
luster interse
ts P for at most � time units beyond the time � .Thus si and d2 must be in the same 
luster by time 2� in 
-AKR-GW(bIH). �Now we use Lemma 3.36 to limit the 
omplexity of a
tive 
lusters of AKR-GW(IH).Lemma 3.37 Suppose S is an a
tive 
luster of AKR-GW(IH) at the time � < T �i . ThenS 
ontains a
tive demands from only one P�-group, and does not 
ontain both si and ti.32
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Proof: The 
luster S does not 
ontain both si and ti by the de�nition of the mergingtime T �i . Suppose for 
ontradi
tion that S 
ontains a
tive demands from distin
t P�-groups.If S 
ontains neither si nor ti then, as in the previous proof, S is also a 
luster of 
-AKR-GW(bIH) at the time � . This 
ontradi
ts Lemma 3.35. Finally, suppose that S 
ontainsdemands d1; d2 from distin
t P�-groups in addition to either si or ti (si, say). Lemma 3.36implies that si, d1, and d2 are in the same 
luster of 
-AKR-GW(bIH) at the time 2� . Sin
e
 � 2, d1 and d2 are a
tive at this time in 
-AKR-GW(bIH), whi
h 
ontradi
ts Lemma 3.35.� Lemma 3.37 allows us to 
lassify the a
tive 
lusters of AKR-GW(IH) at a time � < T �iinto three 
ategories. Re
all that a 
luster S of AKR-GW(IH) isolates the demand d 2 Dat time � if d is the sole a
tive demand in S at the time � .� An a
tive 
luster S of AKR-GW(IH) at a time � < T �i is isolating if it is si- orti-isolating.� Su
h a 
luster S is shared if it 
ontains an a
tive demand from D n fsi; tig and eithersi or ti.� Su
h a 
luster S is independent if it 
ontains neither si nor ti.Suppose that S is in an a
tive 
luster of AKR-GW(IH) during an epo
h pre
eding the timeT �i . If S is shared or independent, then S 
ontains an a
tive demand d 2 D n fsi; tig, andso by Lemma 3.33 there is an a
tive 
luster that 
ontains d in the 
orresponding epo
h of
-AKR-GW(bIH). If S is isolating, then there is no su
h 
orresponding 
luster, as si and tiare not demands in bIH .We 
an now des
ribe our high-level plan for the �nal part of our proof of Theorem 3.24.Re
all that P denotes the si-ti path of tight edges at time T �i in AKR-GW(IH). For a
luster S, we will say that S 
rosses P k times if jP \ Æ(S)j = k. If the 
luster S 
rossesP a total of k times, then it 
ontributes a total of kyS to the left-hand sides of the pa
king
onstraints PS�V : e2Æ(S) yS � 
e for the edges e of P . Sin
e all edges of P are eventuallytight, the sum of all su
h 
ontributions is pre
isely 
(P ).Our key 
laim will be that for a \typi
al" shared or independent 
luster that is a
tivein a given epo
h of AKR-GW(IH), there is a 
orresponding 
luster in the same epo
hof 
-AKR-GW(bIH) that 
rosses P the same number of times. Sin
e epo
hs in the latterexe
ution are 
 times as long as those in the former one, the 
ontribution of these 
lustersto the pa
king 
onstraints of the edges of P is 
 times as large as in the former exe
ution.Sin
e the sum of all su
h 
ontributions is at most 
(P ), only a limited number of the a
tive
lusters that 
ross P in AKR-GW(IH) 
an be shared or independent|the rest must beisolated and thus 
ontribute to the isolated 
ost share of (si; ti).Now we supply the details. We �rst make pre
ise the 
orresponden
e between a
tive
lusters in the two exe
utions. We de�ne an inje
tive map �j for ea
h epo
h j that pre
edesthe time T �i . Fix su
h an epo
h j. Let S be a shared or independent a
tive 
luster ofthis epo
h in AKR-GW(IH). Sin
e S is not isolated, we 
an 
hoose (arbitrarily) an a
tivedemand d 2 D n fsi; tig that lies in S. Let eS be the 
luster 
ontaining d in the jth epo
h of33
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-AKR-GW(bIH). Set �j(S) to eS. Note that �j is de�ned only on the a
tive shared andindependent 
lusters of the jth epo
h. Next we prove several basi
 fa
ts about these maps.Lemma 3.38 Fix an epo
h j of AKR-GW(IH) that 
on
ludes at or before the time T �i .The map �j satis�es the following properties.(a) �j is inje
tive.(b) �j maps a
tive 
lusters to a
tive 
lusters.(
) If S is an a
tive independent 
luster in the jth epo
h of AKR-GW(IH), then S ��j(S).(d) If S is an a
tive shared 
luster 
ontaining d 2 fsi; tig in the jth epo
h of AKR-GW(IH), then �j(S) also 
ontains d.Proof: Part (a) follows from the fa
ts that ea
h a
tive 
luster in the jth epo
h of 
-AKR-GW(bIH) only 
ontains demands from one P�-group (Lemma 3.35), and that ea
h P�-groupof demands is 
ontained in a unique 
luster of the jth epo
h of AKR-GW(IH). Part (b)follows immediately from Lemma 3.33. For part (
), re
all from the proof of Lemma 3.36that sin
e S is an independent 
luster at time � in AKR-GW(IH), it is also a 
luster at time� in 
-AKR-GW(bIH). Sin
e 
lusters only grow with time, in the jth epo
h of 
-AKR-GW(bIH) there is a 
luster eS that 
ontains S, and �j will map S to eS. Finally, part (d)follows dire
tly from Lemma 3.36 and our standing assumption that 
 � 2. �Re
all that the map �j is intended to set up a 
orresponden
e between 
lusters in thejth epo
h of AKR-GW(IH) that 
ross P and 
lusters in the jth epo
h of 
-AKR-GW(bIH)that 
ross P . We next seek to prove that ea
h map �j approximately preserves the numberof 
rossings of P . We �rst note the following 
orollary of Lemma 3.32, whi
h limits thenumber of times that a
tive 
lusters of AKR-GW(IH) 
an 
ross the si-ti path P .Corollary 3.39 Let S be an a
tive 
luster of AKR-GW(IH).(a) If S is isolating or shared, then S 
rosses P at most on
e.(b) If S is independent, then S 
rosses P at most twi
e.The se
ond 
onsequen
e of Lemma 3.32 is that the image �j(S) of a shared or independenta
tive 
luster S 
rosses P as many times as S does, unless either si or ti lies outside S andinside �j(S).Lemma 3.40 Let S be an a
tive shared or independent 
luster of AKR-GW(IH) in anepo
h j that ends at or before time T �i .(a) If �j(S) 
rosses P fewer times than S, then �j(S) n S 
ontains either si or ti.(b) If �j(S) 
rosses P two fewer times than S, then �j(S) n S 
ontains both si and ti.34
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Proof: For part (b), Corollary 3.39 implies that we 
an assume that S is independent and
rosses P twi
e, while �j(S) does not 
ross P . By Lemma 3.38(
), �j(S) � S. Sin
e �j(S)does not 
ross S, it must 
ontain P , and in parti
ular both si and ti. A similar argumentalso proves (a) for independent 
lusters.Finally, suppose S is shared. By symmetry, we 
an assume that S 
ontains si. ByCorollary 3.39(a), we 
an assume that S 
rosses P on
e while �j(S) does not 
ross P . ByLemma 3.38(d), �j(S) also 
ontains si. Thus if �j(S) does not 
ross P , it must 
ontain Pand in parti
ular ti. The proof is 
omplete. �Next we bound the number of times that si or ti 
an appear in a 
luster �j(S) but notin the preimage S.Lemma 3.41 Let S be an a
tive 
luster of AKR-GW(IH) in an epo
h j that ends at orbefore time T �i . Suppose the demand d 2 fsi; tig lies in �j(S) but not S. Then d is isolatedin the jth epo
h of AKR-GW(IH).Proof: We pro
eed by 
ontradi
tion. Suppose that d is in a shared 
luster S 0 in the jth epo
hof AKR-GW(IH), with S 0 
ontaining a demand d0 2 D n fsi; tig. Sin
e this epo
h pre
edesT �i , d and hen
e S 0 are a
tive during this epo
h. By Lemma 3.38(d), �j(S 0) 
ontains both dand d0. By Lemma 3.38(a), �j is inje
tive and hen
e �j(S) 6= �j(S 0). But both �j(S) and�j(S 0) 
ontain d, whi
h 
ontradi
ts the fa
t that distin
t 
lusters in a 
ommon epo
h aredisjoint. �With all of the preliminary results in pla
e, we are �nally prepared to �nish the proof ofTheorem 3.24. The proof will 
losely follow the outline des
ribed following Lemma 3.37.Proof of Theorem 3.24: We adopt all of the notation used above. Lemmas 3.29 and 3.31redu
e inequality (17), and hen
e the proof of the theorem, to showing that
(P ) � 2

 � 1 � ��; (20)where 
(P ) is the 
ost of the si-ti path P in H, and �� is the total amount of time that siand ti spend in isolating 
lusters in AKR-GW(IH).Let C denote the set of possible 
lusters of IH|the sets of verti
es that 
ontain at leastone demand of D. Similarly let bC denote the possible 
lusters of bIH . For a 
luster S, let y(j)Sand z(j)S denote the in
rement in the dual variables yS and zS in the jth epo
hs of AKR-GW(IH) and 
-AKR-GW(bIH), respe
tively. Note that su
h an in
rement is positive in anepo
h if and only if the 
orresponding 
luster is a
tive during the epo
h.For a 
luster S, let �(S) denote the number of times that S 
rosses P . Let epo
h p ofAKR-GW(bIH) end at time T �i . Sin
e P 
omprises only tight edges at time T �i in AKR-GW(IH), pXj=1 XS2C y(j)S � �(S) = 
(P ): (21)Also, pXj=1 XS2bC z(j)S � �(S) � 
(P ): (22)35
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Let CIj � C denote the 
lusters that are si- or ti-isolating during the jth epo
h of AKR-GW(IH). For a non-isolating 
luster S =2 CIj that is a
tive in an epo
h j � p of AKR-GW(IH), let �j(S) = maxf0; �(S)� �(�j(S))g denote the number of \missing 
rossings ofP" from �j(S), relative to S. Sin
e epo
hs in 
-AKR-GW(bIH) are 
 times as long as inAKR-GW(IH), inequality (22) and Lemma 3.38(a) and (b) imply thatpXj=1 XS =2CIj 
 � y(j)S � [�(S)� �j(S)℄ � 
(P ): (23)Next, we 
an use Lemma 3.41 to asso
iate ea
h a
tive, non-isolating 
luster S =2 CIj of thejth epo
h of AKR-GW(IH) with �j(S) isolating 
lusters from the same epo
h. Moreover,the inje
tivity of �j (Lemma 3.38(a)) implies that no su
h isolating 
luster is mapped tomore than on
e: for d 2 fsi; tig, an isolating d-
luster in the jth epo
h of AKR-GW(IH)
an only be mapped to by a 
luster S for whi
h d 2 �j(S). We thus haveXS =2CIj y(j)S � �j(S) � XS2CIj y(j)Sfor ea
h epo
h j � p. Summing over all su
h epo
hs and using the de�nition of the isolated
ost share ��, we have pXj=1 XS =2CIj y(j)S � �j(S) � ��: (24)Combining (23) and (24) then givespXj=1 XS =2CIj y(j)S � �(S) � 
(P )
 + ��: (25)Subtra
ting inequality (25) from equation (21) givespXj=1 XS2CIj y(j)S � �(S) � 
(P )� 
(P )
 � ��: (26)Sin
e �(S) � 1 for all isolating 
lusters S 2 CIj in all epo
hs j � p (Corollary 3.39(a)), theleft-hand side of (26) is a lower bound on ��. Using this fa
t and rearranging we obtain�� � 
 � 12
 � 
(P );whi
h 
ompletes the proof. �Theorems 2.10, 3.21, and 3.24 imply that for every 
 � 2, the algorithm Sample-Augment, using the algorithm 
-AKR-GW as its Steiner Forest subroutine, is a 
onstant-fa
tor approximation algorithm for MRoB. 36
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Theorem 3.42 Algorithm Sample-Augment, with the subproblem step implemented withthe 
-AKR-GW algorithm with 
 � 2, is a [
 + 1 + 2
=(
 � 1)℄-approximation algorithmfor the MRoB problem.Choosing 
 = 1 +p2 we obtain an approximation ratio of 4 + 2p2 � 6:83.Corollary 3.43 Algorithm Sample-Augment, with the subproblem step implemented withthe (1 + p2)-AKR-GW algorithm, is a (4 + 2p2)-approximation algorithm for the MRoBproblem.Prior to our work, the best approximation ratio known for the MRoB problem was more thanone thousand [50℄. In addition, the algorithm in [50℄ is fairly 
ompli
ated. We emphasizethat while our proof of Theorem 3.42 is involved, our MRoB algorithm is relatively simple,with 
omplexity 
omparable to that of the AKR-GW algorithm.Remark 3.44 In a preliminary version of this work [34℄, we presented a 12-approximationalgorithm for MRoB. The improvement in Theorem 3.42 above 
omes from two sour
es.First, the preliminary version [34℄ 
ontained a weaker version of Lemma 3.41, whi
h led toa looser analysis in the proof of Theorem 3.42. Se
ond, as dis
ussed in Remark 3.22, thepreliminary version [34℄ also 
ontained a weaker version of Theorem 3.21. We dis
overedthe �rst improvement soon after the publi
ation of [34℄; this optimization alone gives an8-approximation algorithm for MRoB. As noted in Remark 3.22, we dis
overed the se
ondre�nement of our analysis only after an analogous improvement was presented by Be

hettiet al. [12℄ for a di�erent algorithm. Our approximation ratio of 4 + 2p2 in Theorem 3.42mat
hes that of the algorithm in [12℄.3.4 Multi
ast Rent-or-BuyIn this subse
tion we extend our algorithm and analysis for the MRoB problem to the moregeneral MuRoB problem, where there are arbitrary demand groups in pla
e of demand pairs.Formally, an instan
e of MuRoB is given by the usual graph G = (V;E) with edge 
osts 
, aparameter M , and a set D = fD1; : : : ; Dkg of demand groups. Ea
h demand group Di is anarbitrary set of two or more demands and has a 
orresponding weight wi. A feasible solutionto a MuRoB instan
e buys and rents 
apa
ity on edges as usual, and also spe
i�es a treeAi for ea
h demand group Di that spans all of the demands of Di. The 
apa
ity on ea
hedge e must be at least the weight Pi : e2Ai wi of the trees that in
lude it. In other words,the 
apa
ity installed must be suÆ
ient for simultaneous \multi
ast" 
ommuni
ation withinea
h demand group.3.4.1 Extending the Sample-Augment and 
-AKR-GW AlgorithmsMost of the algorithmi
 and analyti
 te
hniques of Subse
tion 3.3 
arry over to the MuRoBproblem, but a few additional ideas are needed. The high-level approa
h of the Sample-Augment algorithm also applies to the MuRoB problem: sample ea
h demand group Diindependently with probability minfwi=M; 1g, buy in�nite 
apa
ity on edges to 
onne
tdemand groups in the randomly sampled subproblem, and greedily rent 
apa
ity for the37
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remaining demand groups. There are 
learly no subtleties in implementing the samplingstep. The problem that arises in the subproblem step, whi
h we will 
all the GeneralizedSteiner Tree (GST) problem [1, 29℄, seems more general than the Steiner Forest problem,sin
e the 
onne
tivity requirements now involve demand groups rather than demand pairs.An instan
e of GST 
an be 
onverted into an equivalent instan
e of Steiner Forest, however,for example by repla
ing ea
h demand group Di with a set of demand pairs, one for ea
hunordered pair of demands of Di. Thus every �-approximation algorithm for Steiner Forest
an be 
onverted into an �-approximation algorithm for GST. Alternatively, the AKR-GWand 
-AKR-GW algorithms are easily modi�ed to dire
tly approximate the GST problem.First, modify the AKR-GW algorithm so that it deems a 
luster S a
tive whenever thereis a demand group Di for whi
h S 
ontains a non-empty and stri
t subset of the demandsof Di. The merging time Ti of a demand group Di is then the earliest time at whi
h alldemands of Di lie in a 
ommon 
luster. The 
-AKR-GW algorithm is then de�ned for theGST problem in the obvious way.In either 
ase, the following analogue of Theorem 3.21 holds for the (suitably modi�ed)
-AKR-GW algorithm.Theorem 3.45 For every 
 � 1, the 
-AKR-GW algorithm is a (
 + 1)-approximationalgorithm for the GST problem.3.4.2 Stri
t Cost Shares for the 
-AKR-GW Algorithm: The Multi
ast CaseWe next dis
uss stri
t 
ost-sharing methods for GST algorithms and for the 
-AKR-GWalgorithm in parti
ular. Extending the de�nition of a stri
t 
ost-sharing method is straight-forward. By a GST 
ost-sharing method we mean a fun
tion � that assigns a non-negative
ost share �(I; Di) to ea
h demand group Di of an instan
e I of GST, su
h that the sum ofthe 
ost shares is at most the 
ost of an optimal solution to I.De�nition 3.46 Let A be a deterministi
 algorithm for the GST problem. A GST 
ost-sharing method � is �-stri
t for A if for all instan
es I = (G;D) of GST and for all demandgroups Di 2 D, `G=F (Di) � � � �(I; Di);where F is the solution returned for the instan
e (G;D n fDig) by the algorithm A, and`G=F (Di) denotes the value of a minimum-
ost tree in G=F that spans all of the demandsof Di.An algorithm for the GST problem is then �-stri
t if it admits some �-stri
t 
ost-sharingmethod. One new 
ompli
ation is that the value `G=F (Di), whi
h represents the 
heapestway of renting 
apa
ity between the demands of Di given that in�nite 
apa
ity has alreadybeen bought on the edges of F , is NP-hard to 
ompute for general demands groups. Wedis
uss this issue further at the end of the se
tion.We noted above that an �-approximation algorithm for Steiner Forest naturally indu
esan �-approximation algorithm for GST. Unfortunately, a stri
tness guarantee (in the senseof De�nition 2.5) for a Steiner Forest approximation algorithm does not ne
essarily 
arryover to a stri
tness guarantee (in the sense of De�nition 3.46) for the 
orresponding GST38



www.manaraa.com

approximation algorithm. In parti
ular, we must reprove a stri
tness guarantee for the
-AKR-GW algorithm for the GST problem.We next outline how to modify the proof of Theorem 3.24 to show the following result.Theorem 3.47 For every 
 > 2, the 
-AKR-GW algorithm for the GST problem is 4

�2-stri
t.As in the proof of Theorem 3.24, we will show that the isolated 
ost-sharing method(De�nition 3.23) is 4
=(
 � 2)-stri
t for the 
-AKR-GW algorithm. In the 
ontext of theGST problem, a 
luster S is 
alled Di-separating for a demand group Di if S 
ontains anon-empty stri
t subset of the demands of Di, and is Di-isolating if it separates Di andno other demand group. The isolated 
ost share �(I; Di) of a demand group Di of a GSTinstan
e I is then de�ned as the sum of the dual variables 
onstru
ted by the AKR-GWalgorithm for I that 
orrespond to Di-isolating 
lusters.Fix an instan
e I = (G;D) of GST and a demand pair Di 2 D. Let bI denote the GSTinstan
e (G;D n fDig). The �rst part of the proof of Theorem 3.47 is identi
al to that ofTheorem 3.24. In parti
ular, we de�ne Ti to be the merging time of the demand groupDi in AKR-GW(I), the modi�ed exe
ution of 
-AKR-GW(bI) as the exe
ution that usesthe merging times T of AKR-GW(I) (rather than of AKR-GW(bI)) to 
lassify 
lustersas a
tive or ina
tive, P� to be the demand partition of this modi�ed exe
ution at the time
Ti, and H as the graph obtained from G by identifying verti
es that host demands from a
ommon P�-group. Following the proofs of Lemmas 3.25{3.29 establishes the following.Lemma 3.48 Let F be the solution returned by (the original exe
ution of) 
-AKR-GW(bI).Then `G=F (Di) � `H(Di);where `G=F (Di) and `H(Di) denote the values of minimum-
ost trees spanning all demandsof Di in G=F and H, respe
tively.The se
ond part of the proof of Theorem 3.47 is also similar to that of Theorem 3.24.De�ne the GST instan
es IH = (H;D) and bIH = (H;DnfDig), and the (modi�ed) exe
utionsAKR-GW(IH) and 
-AKR-GW(bIH), whi
h use the merging times T in AKR-GW(I) to
lassify 
lusters as a
tive or ina
tive.We next de�ne the isolated 
ost share of Di in (the modi�ed exe
ution of) AKR-GW(IH). In AKR-GW(IH), a demand of Di is a
tive at the time � if and only if � � Ti.We 
all a 
luster S of AKR-GW(IH) Di-isolating at the time � � Ti if S 
ontains at leastone (a
tive) demand of Di and no a
tive demand of another demand group. We de�ne theisolated 
ost share �� of Di in AKR-GW(IH) as the sum of the dual variable in
reasesin AKR-GW(IH) that 
orrespond to Di-isolating 
lusters. More formally, 
all a time �interesting in AKR-GW(IH) if � = 0, if two 
lusters merge at time � , or if some 
lusterbe
omes ina
tive at time � . For future 
onvenien
e, we also 
all a time � interesting if two
lusters merge in 
-AKR-GW(bIH) at the time 
� . As usual, an epo
h is an interval between
onse
utive interesting moments of time and the set of a
tive 
lusters remains un
hangedwithin an epo
h. Let CIj denote the 
lusters of AKR-GW(IH) that are Di-isolating in anepo
h j that ends at or before the time Ti. Let y(j)S denote the in
rement in the dual variables39
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yS in the jth epo
h of AKR-GW(IH). The isolated 
ost share �� of Di in AKR-GW(IH)is formally de�ned as �� = pXj=1 XS2CIj y(j)S ; (27)where p is the number of epo
hs that pre
ede the time Ti. Following the proofs of Lem-mas 3.30 and 3.31 gives the next lemma.Lemma 3.49 The isolated 
ost share �� of Di in AKR-GW(IH) satis�es�� � �(I; Di):Lemmas 3.48 and 3.49 redu
e the proof of Theorem 3.47 to showing that`H(Di) � 4

 � 2 � ��:The analogue of Lemma 3.30 implies that by some time T �i � Ti, all of the demands of Dilie in a 
ommon 
luster of AKR-GW(IH). Sin
e the set of tight edges in AKR-GW(IH)is a
y
li
 (see Lemma 3.17), there is a unique minimal tree Ai of tight edges that spans thedemands of Di at the time T �i in AKR-GW(IH); we use Ai as a proxy for `H(Di).We now arrive at the point at whi
h the proofs of Theorems 3.24 and 3.47 diverge insome small but important ways. First, the analogue of Lemma 3.32 is the following.Lemma 3.50 If the 
luster S is a
tive at time � in AKR-GW(IH), then the verti
es thatlie in both S and Ai form a subtree of Ai.While Lemmas 3.33{3.35 
arry over without 
hange to the present setting, the proof ofLemma 3.36 only gives the following.Lemma 3.51 Suppose at the time � < T �i a 
luster of AKR-GW(IH) 
ontains exa
tly onedemand d1 from Di as well as an a
tive demand d2 not in Di. Then d1 and d2 are in thesame 
luster of 
-AKR-GW(bIH) at the time 2� .We will use the following 
orollary of Lemma 3.51.Corollary 3.52 Suppose the demands d1 2 Di and d2 =2 Di are a
tive and in the same
luster of AKR-GW(IH) at the time � < T �i . Then the 
luster of 
-AKR-GW(bIH) that
ontains d2 at the time 2� also 
ontains at least one demand of Di.Proof: Lemma 3.51 implies that the 
luster of 
-AKR-GW(bIH) that 
ontains d2 at the time2� also 
ontains the �rst demand of Di to share a 
luster of AKR-GW(IH) with d2. �While Lemma 3.37 does not 
ompletely 
arry over to the present setting|in parti
ular, ana
tive 
luster of AKR-GW(IH) might 
ontain a
tive demands from distin
t P�-groups|we
an still 
lassify the a
tive 
lusters of AKR-GW(IH) as (Di-)isolating, shared, or inde-pendent. We 
an also de�ne the maps �j for ea
h epo
h j pre
eding T �i for a
tive sharedand independent 
lusters as in Subse
tion 3.3. Re
all that for su
h a 
luster S in a su
h40
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an epo
h j, we pi
k (arbitrarily) a demand d that lies in S but not Di and set �j to the
luster that 
ontains d in the jth epo
h of 
-AKR-GW(bIH). (Re
all also that epo
hs of
-AKR-GW(bIH) are those of AKR-GW(IH), s
aled by a 
 fa
tor.) Corollary 3.52 andthe proof of Lemma 3.38 then yield the following.Lemma 3.53 Fix an epo
h j of AKR-GW(IH) that 
on
ludes at or before the time T �i .The map �j satis�es the following properties.(a) �j is inje
tive.(b) �j maps a
tive 
lusters to a
tive 
lusters.(
) If S is an a
tive independent 
luster in the jth epo
h of AKR-GW(IH), then S ��j(S).(d) If S is an a
tive shared 
luster in the jth epo
h of AKR-GW(IH), then �j(S) 
ontainsat least one demand of Di.The main 
onsequen
e of our 
on
essions in the above lemmas is that, in the language ofthe proof of Theorem 3.24, we 
an no longer pre
isely 
ontrol the number �j(S) of \missing
rossings" of Ai by �j(S), relative to those by a 
luster S. In parti
ular, we 
annot establishanalogues of Corollary 3.39 and Lemma 3.40 in the GST setting, whi
h in turn will lead to adegradation in our stri
tness bound. Before 
ompleting the proof of Theorem 3.47 we statea �nal lemma, whi
h follows from the argument in the proof of Lemma 3.41.Lemma 3.54 Let S be an a
tive 
luster of AKR-GW(IH) in an epo
h j that ends at orbefore time T �i . Suppose �j(S) 
ontains all of the demands of Di. Then every demand of Dithat lies in �j(S) but not S is in an isolating 
luster in the jth epo
h of AKR-GW(IH).We now 
omplete the proof of Theorem 3.47. As foreshadowed above, it di�ers fromthe proof of Theorem 3.24 primarily in that we bound the impa
t of missing 
rossings in arelatively 
rude way.Proof of Theorem 3.47: Our goal is to show that
(Ai) � 4

 � 2 � ��; (28)where 
(Ai) is the 
ost of the tree Ai and �� is de�ned as in (27). For a 
luster S, let �(S)denote the number of edges in both Ai and Æ(S). Let C and bC denote the possible 
lustersS of IH and bIH , respe
tively, with �(S) > 0. For a 
luster S, let y(j)S and z(j)S denote thein
rement in the dual variables yS and zS in the jth epo
hs of AKR-GW(IH) and 
-AKR-GW(bIH), respe
tively. Let epo
h p end at time T �i . First, the following 
rude bound holds(
f. (22)): pXj=1 XS2bC z(j)S � 
(Ai): (29)41
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As in (21), sin
e Ai 
omprises only tight edges at time T �i in AKR-GW(IH),pXj=1 XS2C y(j)S � �(S) = 
(Ai): (30)Next, we 
laim that for every epo
h j � p, ignoring the number of 
rossings in (30)negle
ts at most half of the sum of the dual in
rements:XS2C y(j)S � 12XS2C y(j)S � �(S):To prove this 
laim, �x an epo
h j � p and 
onsider the set Cj � C of 
lusters that area
tive in this epo
h. Note that y(j)S is the same|namely, the length of the jth epo
h|forall 
lusters S 2 Cj. The 
laim is therefore equivalent to the assertion that the average valueof �(S) among 
lusters in Cj is at most 2. By Lemma 3.50, ea
h su
h 
luster S interse
ts Aiin a subtree of Ai, with distin
t 
lusters 
orresponding to vertex-disjoint subtrees. Obtaina new tree X from Ai by 
ontra
ting ea
h of these disjoint subtrees. Call a vertex x of X
ontra
ted if it 
orresponds to a 
luster S of Cj and original otherwise. If x is a 
ontra
tedvertex 
orresponding to the 
luster S, then the degree of x in X is pre
isely �(S). Sin
e X isa tree, the average degree of a vertex of X is at most 2. Sin
e Ai is a minimal tree that spansthe verti
es of Di, every leaf of Ai is a demand of Di. Sin
e every su
h demand lies in ana
tive 
luster of AKR-GW(IH) in the epo
h j � p, every leaf of X is a 
ontra
ted vertex.Sin
e original verti
es of X all have degree at least 2, the average degree of a 
ontra
tedvertex of X is at most 2, whi
h 
ompletes the proof of the 
laim.Combining the 
laim with (30) yieldspXj=1 XS2C y(j)S � 
(Ai)2 ; (31)the symmetry between (29) and (31) now allows us to pro
eed similarly to the proof ofTheorem 3.24. Let CIj � C denote the Di-isolating 
lusters during the jth epo
h of AKR-GW(IH). For a shared or independent 
luster S 2 Cj n CIj that is a
tive in an epo
h j � pof AKR-GW(IH), let �j(S) equal 1 if �j(S) =2 bC (i.e., if �(�j(S)) = 0) and 0 otherwise.Cru
ially, parts (
) and (d) of Lemma 3.53 imply that �j(S) = 1 for su
h a 
luster only if�j(S) 
ontains all of the demands of Di.Sin
e epo
hs in 
-AKR-GW(bIH) are 
 times as long as in AKR-GW(IH), inequal-ity (29) and Lemma 3.53(a) and (b) imply thatpXj=1 XS =2CIj 
 � y(j)S � [1� �j(S)℄ � 
(Ai): (32)Applying Lemma 3.54, the inje
tivity of �j (Lemma 3.53(a)), and the de�nition (27) of ��then gives pXj=1 XS=2CIj y(j)S � 
(Ai)
 + ��: (33)42
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Subtra
ting inequality (33) from inequality (31) givespXj=1 XS2CIj y(j)S � 
(Ai)2 � 
(Ai)
 � ��;re
alling the de�nition (27) of �� and rearranging establishes (28) and 
ompletes the proof.�3.4.3 A 12.66-Approximation Algorithm for MuRoBFinally, we 
ombine Theorems 3.45 and 3.47 to obtain an approximation algorithm for theMuRoB problem. Naively, there is a new sour
e of error in the Sample-Augment algorithmfor the MuRoB problem: greedily renting 
apa
ity in the augmentation step now 
orrespondsto solving the NP-hard Steiner Tree problem, and therefore requires an approximation al-gorithm. The obvious analogue of Theorem 2.10 for the MuRoB problem is: if a �-stri
t�-approximation algorithm for GST is used in the subproblem step of Sample-Augment,and a 
-approximation algorithm for Steiner Tree is used in the augmentation step, thenSample-Augment is a randomized (� + � � 
)-approximation algorithm for MuRoB.Tra
ing through the proof of Theorem 3.47, however, we see that it 
an be used togive a polynomial-time implementation of the augmentation step of the Sample-Augmentalgorithm. Sin
e the stri
tness guarantee of Theorem 3.47 applies dire
tly to this parti
ularimplementation, there is no further loss in approximation ratio and the bound of �+� fromTheorem 2.10 applies. Pre
isely, by implementing the subproblem and augmentation stepsof the Sample-Augment algorithm with the 
-AKR-GW subroutine and the subroutineimpli
it in the 
orresponding stri
tness proof (Theorem 3.47), respe
tively, the followingbound applies to the Sample-Augment algorithm for the MuRoB problem.Theorem 3.55 For every 
 > 2, there is a randomized [
 + 1 + 4
=(
 � 2)℄-approximationalgorithm for the MuRoB problem.Choosing 
 = 2 + 2p2, we obtain an approximation ratio of 7 + 4p2 � 12:66.4 Virtual Private Network DesignIn this se
tion and the next, we show that stri
t 
ost-sharing methods lead to improvedapproximation algorithms for two problems to whi
h our analysis framework does not dire
tlyapply. In this se
tion, we build on our algorithm and analysis for the SSRoB problem andgive a simple 5.55-approximation algorithm for the VPND problem. We study the SSBaBproblem in the next se
tion.4.1 The VPND AlgorithmRe
all from Subse
tion 1.1 that in an instan
e of the VPND problem (Problem 1.2) we aregiven thresholds bin(j) and bout(j) on the amount of traÆ
 that enters and leaves ea
h demand43
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Input: an VPND instan
e (G;D; b).Assumptions: ea
h demand j 2 D is either a sender or a re
eiver; there are more re
eiversthan senders.1. (Sampling step) Pi
k a sender ŝ uniformly at random.2. (Subproblem step) Use the algorithm Sample-Augment to 
ompute a feasible solutionto the SSRoB instan
e (G;D; 1;M), where D is the set of all pairs of the form (r; ŝ) fora re
eiver r, 1 the ve
tor of unit weights, andM is the number of senders. Let F denotethe edges bought by the algorithm. For every edge e 2 F , set ue =M ; for every otheredge e, set ue equal to the amount of 
apa
ity rented for e by the Sample-Augmentalgorithm.3. (Augmentation step) Greedily and independently reserve one unit of 
apa
ity from ea
hsender other than ŝ to F .Figure 5: The algorithm VPN-Sample-Augment.j 2 D � V of a network G = (V;E) with edge 
osts 
e. The obje
tive is to design a networkwill suÆ
ient 
apa
ity for every traÆ
 pattern that respe
ts these upper bounds. Formally,a traÆ
 pattern is spe
i�ed by a D �D matrix of nonnegative real numbers, with entry fijdenoting the amount of traÆ
 sent from demand i to demand j. A traÆ
 matrix is validif for every demand j, the amount of traÆ
 Pi fij in
oming to j is at most bin(j) and theamount Pi fji of outgoing traÆ
 is at most bout(j). We assume that all of these thresholdsare rational numbers. By s
aling both these thresholds and the edge 
osts of G, we 
an thenassume, without loss of generality, that these thresholds are integral.A feasible solution to a VPND instan
e reserves 
apa
ity ue on ea
h edge e of the graphG, and sele
ts paths Pij between ea
h ordered pair i; j 2 D of demands so that all validtraÆ
 matri
es 
an be routed using these paths without violating the reserved 
apa
ities.The 
ost of a solution is Pe 
eue and we seek a solution of minimum 
ost.To simplify our exposition, we assume for most of this se
tion that ea
h demand j isa either a sender (with bin(j) = 0 and bout(j) = 1) or a re
eiver (with bin(j) = 1 andbout(j) = 0). In Remark 4.9, we indi
ate how to extend our algorithm and analysis to generalVPND instan
es. We will also assume that the re
eivers of the VPND instan
e outnumberthe senders; the algorithm and analysis in the other 
ase are symmetri
.Figure 5 presents our algorithm for the VPND problem, whi
h we 
all VPN-Sample-Augment. Its high-level outline is the same as for the Sample-Augment algorithm. Givenan instan
e I of VPND, we �rst de�ne a random subproblem, whi
h in this 
ase is an instan
eISSRoB of SSRoB. The only random parameter of ISSRoB is the sink vertex, whi
h is a senderŝ of I that is pi
ked uniformly at random. The sour
e verti
es of ISSRoB are de�ned to bethe re
eivers of I, and ea
h 
orresponding demand pair is given unit weight. Finally, the
ost M of buying 
apa
ity on an edge is de�ned to be the number of senders. We then solvethe random subproblem ISSRoB with the Sample-Augment algorithm of Subse
tion 3.1.We interpret the resulting feasible solution of ISSRoB as follows. Let F be the set of edges44
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on whi
h the Sample-Augment subroutine bought 
apa
ity. In our VPND solution, wereserve M units of 
apa
ity on ea
h edge e 2 F . If the Sample-Augment algorithm rents
apa
ity for an edge e, then in our VPND solution we reserve the same amount of 
apa
ityon e. Finally, we greedily augment this partial solution to a feasible solution for the VPNDinstan
e I as follows: independently for ea
h sender s 6= ŝ, reserve one unit of 
apa
ity fors's ex
lusive use on a shortest path between s and F . For ea
h sender s and re
eiver r, thes-r path Psr is de�ned as the 
on
atenation of s's shortest path to F , a path through F toŝ, and the ŝ-r path de�ned by the Sample-Augment subroutine's solution to the instan
eISSRoB.Next we prove some basi
 fa
ts about the algorithm VPN-Sample-Augment. Forthe remainder of the analysis, �x an instan
e I = (G;D; b) of VPND that satis�es our twostanding assumptions. Let R and S denote the sets of re
eivers and senders of I, respe
tively.Let F denote the set of edges bought by the Sample-Augment algorithm in the subproblemstep of VPN-Sample-Augment.Lemma 4.1 The algorithm VPN-Sample-Augment produ
es a feasible solution with prob-ability 1.Proof: Fix a valid demand matrix ffsrgs2S;r2R. We need to show that routing fsr unitsof 
ow on the path Psr de�ned above for every s 2 S and r 2 R does not violate any
apa
ity 
onstraint (with probability 1). We �rst 
laim that no edge e 2 F bought by theSample-Augment subroutine in the subproblem step is used beyond its 
apa
ity. Thisfollows be
ause M units of 
apa
ity are reserved on ea
h su
h edge and, sin
e there are onlyM senders, Ps;r fsr �Ps bout(s) =M .On the other hand, the VPN-Sample-Augment algorithm expli
itly reserves 
apa
ityon ea
h edge outside F for ea
h path that uses it. In more detail, for every sender s, allpaths of the form Psr begin with a shortest path from s to F , and the augmentation stepof the VPN-Sample-Augment algorithm reserves one unit of 
apa
ity on this subpath forex
lusive use by s. Sin
e Pr fsr � bout(s) = 1, there is suÆ
ient 
apa
ity for the traÆ
 onthese subpaths. Similarly, for ea
h re
eiver r, all paths of the form Psr 
on
lude with theŝ-r path Pr de�ned by the Sample-Augment algorithm's solution to the instan
e ISSRoB.Moreover,Ps fsr � 1. By the de�nition of the augmentation step of the Sample-Augmentalgorithm, there is one unit of 
apa
ity on the edges of Pr n F reserved for ex
lusive use bythe sender r. There is thus suÆ
ient 
apa
ity on every edge for the traÆ
 of every path Psr,and the proof is 
omplete. �Also, the union of the routing paths produ
ed by theVPN-Sample-Augment algorithmform a tree with probability 1.Lemma 4.2 If a 
onsistent tie-breaking rule is used to 
ompute shortest paths, then withprobability 1 the algorithm VPN-Sample-Augment produ
es a solution in whi
h the edgeswith non-zero 
apa
ity form a tree.Proof: Sin
e the set F is the output of a Steiner Tree instan
e algorithm, it is (or 
an beassumed to be) a tree. By the de�nition of the augmentation steps of the Sample-Augmentand VPN-Sample-Augment algorithms, all other edges with non-zero 
apa
ity lie on a45
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shortest path between a demand j and the set F|equivalently, are 
ontained in the shortest-path tree in the 
ontra
ted graph G=F rooted at the vertex 
orresponding to F . This impliesthat if a 
onsistent tie-breaking rule is used to 
ompute shortest paths, the set of all edgeswith non-zero 
apa
ity forms a tree. �4.2 AnalysisWe now bound the expe
ted 
ost of the solution produ
ed by the VPN-Sample-Augmentalgorithm for the VPND instan
e I. We will do this by bounding three parts of this 
ostseparately: the expe
ted 
ost 
orresponding to the set F of edges bought by the Sample-Augment subroutine in the subproblem step; the expe
ted 
ost 
orresponding to the rentededges in the subproblem step; and the expe
ted 
ost of the augmentation step. The �rsttwo steps hinge on the following lemma, whi
h bounds the expe
ted 
ost of an optimalsolution to the (random) instan
e of Steiner Tree that arises in the subproblem step of theSample-Augment subroutine (
f., Lemma 2.2).Lemma 4.3 Let OPTV PN denote the 
ost of an optimal solution for the VPND instan
e I.Let OPTŝ;R̂ denote the 
ost of an optimal solution for the Steiner Tree instan
e in the sub-problem step of the Sample-Augment subroutine, given the random 
hoi
es of the senderŝ 2 S and re
eivers R̂ � R in the sampling steps of the VPN-Sample-Augment andSample-Augment algorithms, respe
tively. ThenE [OPTŝ;R̂℄ � OPTV PNM ; (34)where the expe
tation is over the random 
hoi
es of ŝ and R̂.Proof: We begin with the following equivalent des
ription of the random 
hoi
es made inthe sampling steps of the VPN-Sample-Augment and Sample-Augment algorithms.Suppose ea
h re
eiver pi
ks a sender independently and uniformly at random. Let Ds � Rdenote the random set of re
eivers that pi
k the sender s. Then, independently 
hoose asender ŝ uniformly at random and 
onsider the Steiner Tree instan
e Iŝ de�ned by Dŝ [fŝg.We 
laim that this random pro
ess indu
es the same distribution over Steiner Tree instan
esthat the algorithm VPN-Sample-Augment does. In both pro
esses, one sender ŝ, 
hosenuniformly at random from the set of all senders, is in
luded in the Steiner Tree instan
e. In theVPN-Sample-Augment algorithm, ea
h re
eiver has a 1=M probability of being in
ludedin the Steiner Tree instan
e by the de�nition of the sampling step of the Sample-Augmentsubroutine. In the new random pro
ess, sin
e there are M senders, the probability that are
eiver pi
ks the sender ŝ and is in
luded in the resulting Steiner Tree instan
e is also 1=M .Moreover, these events are independent of ea
h other and of the 
hoi
e of the sender ŝ,just as in the VPN-Sample-Augment algorithm. The two random pro
esses thereforeindu
e the same distribution over Steiner Tree instan
es, and we 
an prove the lemma byestablishing (34) for the new random pro
ess above.We now prove that the expe
ted 
ost of an optimal solution to the random Steiner Treeinstan
e Iŝ is at most OPTV PN=M . We will prove this inequality after 
onditioning on the46
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partition fDsgs2S of re
eivers, with the expe
tation only over the 
hoi
e of ŝ; the un
ondi-tional inequality (34) then follows. Fix an optimal solution to the VPND instan
e I thatreserves the paths fP �srgs2S;r2R and 
apa
ities fu�ege2E. We next show how to pa
k feasiblesolutions for all M of the Steiner Tree instan
es fIsgs2S into this optimal solution.For ea
h sender s 2 S, let G�s denote the subgraph of G with the edge set [r2DsP �sr. Sin
eG�s spans Ds [ fsg, the 
ost 
(G�s) of the subgraph G�s is at least denote the value OPTs ofan optimal solution to Is. Moreover, if an edge e appears in k subgraphs of the form G�s,then it is a member of k sender-re
eiver paths that share no endpoints. Sin
e simultaneousrouting of traÆ
 on these k paths must be supported, OPTV PN must install at least k unitsof 
apa
ity on the edge e. Therefore,OPTV PN �Xs2S 
(G�s) �Xs2S OPTs:Thus, if we pi
k a sender uniformly at random from theM senders, E s[OPTs℄ � OPTV PN=M ,whi
h 
ompletes the proof. �A proof identi
al to that of Lemma 2.3 bounds the expe
ted 
ost in
urred by the VPN-Sample-Augment algorithm for bought edges in its subproblem step.Lemma 4.4 If an �-approximation algorithm for Steiner Tree is used in the subproblem stepof the Sample-Augment subroutine, then the expe
ted 
ost in
urred by the VPN-Sample-Augment algorithm for bought edges in its subproblem step is at most � �OPTV PN .We next use the universally stri
t 
ost shares for Steiner Tree (Subse
tion 3.1) to boundthe expe
ted 
ost in
urred by the VPN-Sample-Augment algorithm in the subproblemstep for edges that were rented by its Sample-Augment subroutine.Lemma 4.5 The expe
ted 
ost in
urred by the VPN-Sample-Augment algorithm forrented edges in its subproblem step is at most 2 �OPTV PN .Proof: Let C denote the 
ost paid by the VPN-Sample-Augment algorithm for rentededges in its subproblem step. Re
all from De�nition 3.2 and Example 3.3 that the Prim 
ost-sharing method of Example 2.8 is universally 2-stri
t. In parti
ular, Lemma 3.4 implies thatthese 
ost shares are 2-stri
t no matter what Steiner Tree algorithm is used in the subproblemstep of the Sample-Augment algorithm.We next 
ondition on the 
hoi
e of ŝ in the sampling step of theVPN-Sample-Augmentalgorithm. For a subset R̂ � R of re
eivers, let OPTŝ;R̂ denote the value of a minimum-
ostSteiner tree spanning ŝ and all of the re
eivers in R̂. The proof of Lemma 2.9, and theinequalities (4) and (8) in parti
ular, imply thatE R̂[Cjŝ℄ � 2M �E R̂ hOPTŝ;R̂i ;where the expe
tations are over the random 
hoi
e of the set R̂ of re
eivers in the Sample-Augment subroutine's sampling step. Taking expe
tations over the 
hoi
e of ŝ, we obtainE ŝ;R̂[C℄ � 2M �E ŝ;R̂ hOPTŝ;R̂i � 2 �OPTV PN ;47
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where the se
ond inequality follows from Lemma 4.3. The proof is 
omplete. �Our �nal lemma bounds the expe
ted 
ost of the augmentation step of the VPN-Sample-Augment algorithm.Lemma 4.6 The expe
ted 
ost in
urred in the augmentation step of the VPN-Sample-Augment algorithm is at most 2 �OPTV PN .Proof: Sin
e the set F of bought edges 
ontains the sender ŝ, we 
an prove the lemma byshowing that, if a sender ŝ is pi
ked uniformly at random, thenE "Xs2S `(s; ŝ)# � 2 �OPTV PN ;where `(�; �) denotes shortest-path distan
e in G. To prove this inequality, we �x a set R̂ � RofM re
eivers. Every perfe
t mat
hingM of S and R̂ provides a lower boundP(s;r)2M `(s; r)on OPTV PN , sin
e a feasible solution must support the simultaneous 
ommuni
ation of allof the mat
hed pairs of M. Averaging over all of the M ! possible perfe
t mat
hings of Sand R̂, we obtain 1M Xs2S;r2R̂ `(s; r) � OPTV PN ;as ea
h sender-re
eiver pair (s; r) appears in (M � 1)! of the M ! perfe
t mat
hings. Thisinequality implies that E ŝ 24Xr2R̂ `(ŝ; r)35 � OPTV PN : (35)Also, by the Triangle inequality for shortest-path distan
es,Xs2S `(s; ŝ) �Xr2R̂ `(ŝ; r) + X(s;r)2M `(s; r) �Xr2R̂ `(ŝ; r) +OPTV PN ; (36)where M is an arbitrary perfe
t mat
hing of S and R̂. Taking expe
tations (over the 
hoi
eof ŝ) in (36) and 
ombining with (35) proves the lemma. �Combining Lemmas 4.4{4.6 with the 1.55-approximation algorithm for the Steiner Treeproblem due to Robins and Zelikovsky [58℄ yields the main theorem of this se
tion.Theorem 4.7 There is a randomized 5.55-approximation algorithm for the VPND problem.Lemma 4.2 states that the VPN-Sample-Augment algorithm always outputs a treesolution. Our analysis of the algorithm, however, does not assume that the paths 
hosen bythe optimal solution form a tree. Indeed, there are instan
es in whi
h no optimal solutionforms a tree [33℄. Theorem 4.7 implies that for every instan
e of VPND, there is a treesolution within a (small) 
onstant fa
tor of the optimal (graph) solution. This resolves oneof the main open questions from [33℄. 48
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Corollary 4.8 Every instan
e of VPND admits a tree solution with 
ost no more than 5.55times that of an optimal (graph) solution. Moreover, this solution 
an be 
omputed in poly-nomial time.If the 
onstraint of polynomial-time 
omputation is dropped, then the 
onstant in Corol-lary 4.8 
an be improved to 5 by using an (exponential-time) optimal Steiner Tree subroutinein the VPN-Sample-Augment algorithm.Remark 4.9 The VPN-Sample-Augment algorithm and its analysis extend to the 
aseof arbitrary (integral) thresholds bin and bout as follows. Given an instan
e of VPND, supposewe modify the instan
e by splitting ea
h demand j into bin(j) re
eivers and bout(j) senders,all of whi
h are 
o-lo
ated. This in
reases the set of feasible solutions, sin
e it allows thetraÆ
 of an original demand pair to be routed on more than one path. The modi�
ation
an therefore only de
rease the 
ost of an optimal solution. On the other hand, if the VPN-Sample-Augment algorithm uses a 
onsistent tie-breaking rule for 
omputing shortestpaths as in Lemma 4.2, then it will output a solution for the modi�ed instan
e that is alsofeasible for the original instan
e. Running the VPN-Sample-Augment algorithm aftersplitting demands into senders and re
eivers therefore produ
es a feasible solution to theoriginal instan
e that is at most 5:55 times as 
ostly as an optimal solution (for the originalor the modi�ed instan
e).Splitting demands into senders and re
eivers is only a polynomial transformation if all ofthe demand thresholds are polynomially bounded. However, by adjusting the sampling prob-abilities in the sampling steps of the VPN-Sample-Augment algorithm and its Sample-Augment subroutine, we 
an easily modify the algorithm to mimi
 its behavior on themodi�ed instan
e in polynomial time.5 Single-Sink Buy-at-Bulk Network DesignThis se
tion gives a simple 
onstant-fa
tor approximation algorithm for the widely studiedSSBaB problem. Our algorithm is 
losely related to that of Guha, Meyerson, and Muna-gala [32℄, but the analysis tools developed in this paper permit a tighter and equally simpleanalysis. Subse
tion 5.1 introdu
es notation for our analysis and reviews some well-knowntransformations of SSBaB instan
es. Subse
tion 5.2 presents our algorithm and analysis.5.1 PreliminariesRe
all that an instan
e of the SSBaB problem (Problem 1.3) 
omprises an undire
ted graphGand edge 
osts 
; a set D of demand pairs f(si; t)gki=1; a weight wi � 0 for ea
h demand pair(si; t), denoting the amount of 
ow that si wants to send to t; andK 
able types f1; 2; : : : ; Kg,where the jth 
able has 
apa
ity uj and 
ost �j per 
able per unit length. The goal is to
ompute a minimum-
ost way of installing 
ables so that there is suÆ
ient 
apa
ity for allsour
es to route 
ow simultaneously.Fix an instan
e I of SSBaB. We will assume that ea
h parameter uj and �j is a powerof 2. Similarly to [32℄, this assumption 
an be enfor
ed while losing a fa
tor of 4 in the49
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approximation ratio, by rounding ea
h 
apa
ity uj down to the nearest power of 2 and ea
h�j up to the nearest power of 2. By s
aling and reordering 
able types, we 
an assume that1 = u1 < � � � < uK and 1 = �1 < � � � < �K; if ui � uj and �i � �j, then 
able type i isredundant and 
an be eliminated.De�ne Æj = �j=uj, whi
h intuitively is the \in
remental 
ost" of using 
able type j. Forall j, Æj is a power of 2. We 
an assume that Æ1 > : : : > ÆK, sin
e if Æi � Æj for some i < j,then 
able type j is redundant and 
an be eliminated.Finally, we de�ne gj = �j+1�j uj. Sin
e Æj > Æj+1, gj < uj+1 and hen
e1 = u1 < g1 < u2 < g2 < : : : < uK < gK =1: (37)Next, we would like to assume that all weights wi are integral. This assumption is notwithout loss of generality, as we have already s
aled the 
able 
apa
ities. Instead, we enfor
ethis assumption with the following \redistribution lemma." Roughly speaking, this lemmashows how to take a grouping parameter U , along with a tree with weights on its verti
es,and randomly move weights throughout the tree so that the total weight at every node ofthe tree be
omes either 0 or U . (For ensuring integral demands, we will take U to be 1).Moreover, this random pro
ess has two important properties: the probability that a vertexin the tree re
eives weight U is proportional to its initial weight, and no edge of the tree
arries too mu
h 
ow during the reallo
ation.Lemma 5.1 (Redistribution Lemma) Let T be a tree and U > 0 a parameter. Supposeea
h vertex j 2 T has a nonnegative weight wj < U and that the sum Pj wj of the weightsis a multiple of U . Then there is an eÆ
iently 
omputable (random) 
ow f in T with thefollowing properties.(a) With probability 1, f sends at most U units of 
ow a
ross ea
h edge of T .(b) After rerouting weights a

ording to the 
ow f , for every vertex j 2 T , the new weightof j is U with probability wj=U and 0 with probability 1� wj=U .A deterministi
 version of this lemma appears in [40, Lemma 1℄. We in
lude the simple prooffor 
ompleteness.Proof: Repla
e ea
h edge of T by two oppositely dire
ted ar
s. We �rst show that the lemmaholds in this bidire
ted tree eT . We start by rooting eT at an arbitrary vertex r and takingan Euler tour of eT starting at r. Order the verti
es j1; : : : ; jn of T a

ording to their �rstappearan
e in this Euler tour. For ea
h i 2 f1; 2; : : : ; ng, let Wi denote the sum of theweights of the �rst i verti
es in this ordering. De�ne W0 to be 0.Pi
k a value Y drawn uniformly at random from (0; U ℄. Call vertex ji unlu
ky if forsome integer x, Wi�1 < xU + Y � Wi|if the running sum of weights just 
rossed the pointY modulo U|and lu
ky otherwise. After this pro
edure 
on
ludes, we de�ne the 
ow ef toreroute weights as follows. If a vertex ji is lu
ky, we add a 
ow path to ef that routes all of ji'sweight to the unlu
ky vertex that is next a

ording to the ordering ji+1; : : : ; jn; j1; : : : ; ji�1.Otherwise, the vertex ji is only allowed to route Wi � (xU + Y ) units of its weight to thenext unlu
ky vertex, where x is the integer de�ned above.50
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After this rerouting, a vertex has weight U if it is unlu
ky and weight 0 if it is lu
ky.The probability that the vertex j is unlu
ky is pre
isely wj=U . Thus the 
ow ef satis�espart (a) of the lemma. The 
ow need not satisfy part (b), however: while ef routes at mostU units of 
ow on ea
h ar
 of eT , this 
orresponds to routing at most 2U units of 
ow on ea
hedge of the original undire
ted tree T . But sin
e ef routes at most U units of 
ow in ea
hdire
tion a
ross ea
h edge of T , we 
an perform rudimentary 
ow-
an
eling independentlyon ea
h edge of T . This yields a 
ow f in T that satis�es part (b) of the lemma and, sin
eit redistributes weights identi
ally to ef , also satis�es part (a). �We will use Lemma 5.1 as a prepro
essing step to 
olle
t integral demands at somesubset of the sour
es of the instan
e I. First, we 
an assume that the sum of the demandpair weights in I is greater than 1; otherwise even the 
heapest 
able type e�e
tively hasin�nite 
apa
ity, and I is equivalent to a Steiner Tree instan
e. We also assume that thesum W of the demand pair weights in I is a power of 2 and is at least uK; this assumption
an be removed by adding a dummy demand pair (t; t) with an appropriate weight, andby modifying the following algorithm and analysis to ensure that this dummy weight neverleaves the sink t.As a prepro
essing step of the algorithm in the next subse
tion, we use an �-approximationalgorithm for the Steiner Tree problem to 
ompute a tree T0 that spans all of the sour
es,and build one 
able of type 1 on ea
h edge of T0. We then apply Lemma 5.1 to the tree T0,with U = 1 and the weight of the sour
e si de�ned as the fra
tional part wi � bwi
 of itsweight in I. After this pro
edure 
on
ludes, there is an integral amount of weight at everysour
e of I.We now bound the 
ost of T0. Fix an optimal solution to I and let OPT denote its
ost. Let C�(j) denote the 
ost of the 
ables of type j in this solution. Note that OPT =PKj=1C�(j). This solution must install nonzero 
apa
ity on a subgraph G� of G that spansall of the sour
es of I. Thus one 
andidate for a Steiner Tree solution T0 is to build onetype 1 
able on ea
h edge of G�. Sin
e �1 = 1, the 
ost of this 
andidate solution is at mostKXj=1 C�(j)�j : (38)Sin
e we use an �-approximation algorithm to 
ompute the Steiner tree solution T0, the 
ostof T0 is at most � times the quantity in (38).5.2 The Algorithm SSBaB-Sample-AugmentWe now present our 
onstant-fa
tor approximation algorithm for the SSBaB problem. Thealgorithm is similar to that of Guha, Meyerson, and Munagala [32℄, where the network isdesigned in
rementally in stages. At the beginning of ea
h stage j there will be a set ofdemands, ea
h of whi
h represents a group of uj units of traÆ
 that must be routed to thesink. During the jth stage, we use the value uj+1 as an \aggregation threshold", and reroutegroups of uj+1=uj demands (ea
h of weight uj) into a single demand of weight uj+1. We buy
ables on the paths required for this agglomeration. At the end of all of the stages, every51
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demand rea
hes the sink. The �nal solution is the union of all of the 
ables bought in allof the stages. Sin
e this 
apa
ity is suÆ
ient to move all of the pres
ribed traÆ
 from thesour
es to the sink (via the 
on
atenation of the rerouting paths used in ea
h stage of thealgorithm), this solution is feasible.Let W denote the sum of the demand pair weights; re
all from Subse
tion 5.1 that we
an assume that W is a power of 2. Our prepro
essing step from Subse
tion 5.1 ensuresthat at the beginning of the �rst stage there is an integral weight at every sour
e vertex.If the sour
e si has weight wi at the beginning of the �rst stage, we interpret this as wi
o-lo
ated demands, ea
h of weight 1. Let D1 denote the set of these unit-weight demands.While naively repli
ating demands 
ould result in a pseudopolynomial-time algorithm, non-uniform sampling 
an be added to the SSBaB-Sample-Augment algorithm to simulatethe e�e
t of this repli
ation in polynomial time (see also Remark 4.9).More generally, at the beginning of the jth stage, there is a set Dj of W=uj demands,lo
ated at the sour
e verti
es of I, with weight uj ea
h. We now des
ribe ea
h stage j ofthe algorithm in more detail; see also Figure 6. In the sampling step, we 
hoose a randomsubset bDj � Dj of demands, with ea
h demand of Dj pi
ked independently with probabilitypj = uj=gj = �j=�j+1. Note that the sampling probability pj is the ratio between the
osts of the relatively low-
apa
ity type j 
ables and relatively high-
apa
ity type (j + 1)
ables, analogous to the sampling step in the algorithm Sample-Augment for rent-or-buyproblems. In the subproblem step, we 
ompute a Steiner tree Tj spanning the set Fj, whi
his the union of the sink t and the sour
e verti
es that 
ontain a demand of bDj. We build one
able of type (j + 1) on ea
h edge of Tj. In the augmentation step, we route the demandsoutside bDj to verti
es of Fj along shortest paths, while building 
ables of type j on theseshortest paths. In the gathering step, for ea
h 
o-lo
ated group of uj+1=uj demands, we sendall of these demands ba
k to the originating lo
ation (at the beginning of this stage) of one ofthem, 
hosen uniformly at random. This group of uj+1=uj demands is then treated as a singledemand of Dj+1 with weight uj+1 in the next stage. Finally, the rounding step is like theprepro
essing step of Subse
tion 5.1 and uses Lemma 5.1 to gather the remaining demandsinto groups of uj+1=uj demands. Ea
h su
h group is then rerouted as in the gathering step,and is a single demand of Dj+1 of weight uj+1 in the next stage. In the Kth stage, gK =1and pK = 0. Thus, the sampling step of the �nal stage is va
uous and all demands are sentto the sink t in the augmentation step.Ea
h demand d of Dj+1 
an be naturally asso
iated with a demand of Dj|the demandthat parti
ipated in the 
omplete group of uj+1=uj demands of Dj that 
orresponds to d, andthat was randomly 
hosen in the gathering or rounding step. Put di�erently, we 
an viewthe jth stage of the algorithm as, for ea
h 
omplete group of uj+1=uj demands identi�ed inthe gathering and rounding steps, multiplying the weight of a random su
h demand by auj+1=uj fa
tor and dis
arding the rest of them. We 
an thus sensibly write Dj+1 � Dj forevery j 2 f1; 2; : : : ; K � 1g. Finally, re
all that D1 is the result of the prepro
essing stepof Subse
tion 5.1 and is not the original set of demands of I. De�ne D0 as the initial setof demands, with ea
h demand pair (si; t) with weight wi of I giving rise to dwie demandsof D0 (bwi
 unit-weight demands and one demand with weight wi � bwi
). Lemma 5.1(b)implies that the probability that a demand of D0 is also in D1 is exa
tly its weight.We now analyze the algorithm on the �xed SSBaB instan
e I with a sequen
e of lemmas.52
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1. (Sampling step) Constru
t a random subset bDj of the demands in Dj by 
hoosing ea
hsu
h demand independently with probability pj = uj=gj = �j=�j+1.2. (Subproblem step) Let Fj denote the union of the sink and the sour
es that 
ontain ademand from bDj. Constru
t an �-approximate Steiner tree Tj that spans Fj. Install a
able of type (j + 1) on ea
h edge of Tj.3. (Augmentation step) For ea
h demand in Dj, route its uj weight to the 
losest vertexin Fj. Install one 
able of type j on ea
h edge of this shortest path.4. (Gathering step) For ea
h vertex v 2 Fj, split the demands at v into 
omplete groupsof uj+1=uj demands plus one residual group of rv < uj+1=uj demands. Route ea
h
omplete group ba
k to the initial lo
ation (at the beginning of this stage) of one ofthe uj+1=uj 
ontributing demands, 
hosen uniformly at random. Install 
ables of typej + 1 to provide suÆ
ient 
apa
ity.5. (Rounding step) Use Lemma 5.1 with the tree Tj, the parameter U = uj+1, and theweights of the residual groups, to aggregate the weight of all of the residual groups into
omplete groups of uj+1=uj demands, ea
h with total weight exa
tly uj+1. Reroute a
omplete group at the vertex v 2 Fj ba
k to the initial lo
ation of one of the rv demandsthat were routed to v in the augmentation step, 
hosen uniformly at random. Again,build new 
ables of type j + 1 to provide suÆ
ient 
apa
ity.Figure 6: The jth stage of the algorithm SSBaB-Sample-Augment.Lemma 5.2 For every unit-weight demand d 2 D1 and every stage j 2 f1; 2; : : : ; Kg,Pr[d 2 Dj℄ = 1uj :Proof: The proof is by indu
tion. The lemma is 
learly true when j = 1. For j > 1, we havePr[d 2 Dj℄ = Pr[d 2 Dj j d 2 Dj�1℄ �Pr[d 2 Dj�1℄:Sin
e Pr[d 2 Dj�1℄ = 1=uj�1 by the indu
tive hypothesis, we only need to show thatPr[d 2 Dj j d 2 Dj�1℄ = uj�1=uj. If d is gathered into a 
omplete group of uj=uj�1 demandsin the gathering step of stage (j�1) of the algorithm, then this equality holds be
ause everysu
h demand is equally likely be 
hosen for membership in Dj. Suppose d is gathered intoa residual group of rv < uj=uj�1 demands at the vertex v 2 Fj�1 in the gathering step ofstage (j � 1) of the algorithm. Then d is in
luded in Dj if and only if the RedistributionLemma gathers a 
omplete group of demands at the vertex v in the rounding step and thend is 
hosen for membership in Dj from the rv demands in the residual group at v. ByLemma 5.1(b), the probability of both events o

urring isrvuj�1uj � 1rv = uj�1uj ;53
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whi
h 
ompletes the proof of the lemma. �Lemma 5.2 implies that for every stage j 2 f1; 2; : : : ; Kg, a demand d 2 D1 lies in the setbDj with probability pj � 1=uj = 1=gj. The probability that a demand d 2 D0 with weightw � 1 lies in the set bDj is thus w=gj.The next lemma bounds the expe
ted 
ost of an optimal solution to the Steiner Treeinstan
e arising in the subproblem step of ea
h stage of the SSBaB-Sample-Augmentalgorithm (
f., Lemmas 2.2 and 4.3).Lemma 5.3 For a stage j 2 f1; 2; : : : ; K � 1g, let T �j be a minimum-
ost Steiner treespanning Fj with 
ost 
(T �j ). ThenE [
(T �j )℄ � KXi=j+1 C�(i)�i + 1gj jXi=1 C�(i)Æi ; (39)where C�(i) denotes the 
ost of the 
ables of type i in a �xed optimal solution to I, and theexpe
tation is over the 
hoi
e of bDj.Proof: As in the proof of Lemma 2.2, we will exhibit a (random) subgraph Gj of G thatspans Fj and has low expe
ted 
ost. Fix an optimal solution for I and a feasible way ofrouting all of the traÆ
 with respe
t to this solution. We �rst add to Gj all of the edges inthe optimal solution that possess a 
able of type j + 1 or higher. The 
ost of these edges is(deterministi
ally) at most the �rst sum on the right-hand side of (39).We 
omplete Gj by 
onsidering ea
h demand d of bDj in turn. In the �xed optimalsolution, the traÆ
 of the 
orresponding demand d 2 D0 may be routed on multiple paths.(We unfortunately 
annot assume without loss of generality that an optimal solution is atree.) We randomly add to Gj one of these paths, with a path 
hosen with probability equalto the fra
tion of d's traÆ
 that it 
arries.We now bound the expe
ted 
ost of adding these edges to Gj. Consider an edge e of Gwith no 
able of type j + 1 or higher in the optimal solution. First suppose that only one
able is installed on e, say of type i � j. Then e is in
luded in the random subgraph Gj ifand only if the following events o

ur: for some demand d 2 D0 and some path P that routessome of d's traÆ
 a
ross the edge e, the demand d lies in bDj, and the path P is sele
tedamong all paths that route d's traÆ
. A demand d 2 D0 with weight w � 1 lies in bDj withprobability w=gj, and a path P is 
hosen with probability x=w, where x is the amount ofd's traÆ
 that is routed on P in the optimal solution. The Union Bound then implies thate lies in Gj with probability at most fe=gj, where fe is the total amount of 
ow on e in theoptimal solution.Sin
e fe � ui, edge e 
ontributes at most 
eui=gj to the expe
ted 
ost of Gj. On the otherhand, the 
able of type i on edge e 
ontributes �i
e to C�(i). Thus the expe
ted 
ost in Gjfor edge e is at most 1=(gj Æi) times what the optimal solution pays for the 
able. For edgeson whi
h the optimal solution installs multiple 
ables, this same analysis 
an be performedon a 
able-by-
able basis. Summing over all edges with no 
able of type j+1 or higher in theoptimal solution gives the se
ond sum on the right-hand side of (39) and proves the lemma.� 54
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We now relate the expe
ted 
ost in
urred by the SSBaB-Sample-Augment algorithmto the expe
ted 
ost of an optimal Steiner tree spanning the verti
es in Fj.Lemma 5.4 Let j 2 f1; 2 : : : ; K � 1g be a stage and T �j a minimum-
ost Steiner tree span-ning Fj with 
ost 
(T �j ). The expe
ted 
ost in
urred in stage j of the algorithm SSBaB-Sample-Augment is at most (3 + �) �j+1E [
(T �j )℄;where � is the approximation ratio of the Steiner Tree algorithm used in the subproblem step.Proof: Sin
e we install one 
able of type (j+1) on ea
h edge of the tree Tj that we 
omputein the subproblem step, the expe
ted 
ost in
urred in this step is at most � �j+1E [
(T �j )℄.As in Lemma 4.5, the universally 2-stri
t Prim 
ost shares of Example 2.8 imply that theexpe
ted 
ost of the augmentation step is at most 2 �j+1E [
(T �j )℄. In more detail, we abusenotation and write �( bDj; di) for the Prim 
ost share of a demand pair (di; t) in the SteinerTree instan
e (G;D), where D = f(di; t) : di 2 bDjg. As in the proof of Lemma 2.9, wede�ne two random variables Bi and Ri for ea
h demand di 2 Dj. The random variableBi is equal to �j+1 times the Prim 
ost share �( bDj; di) when di 2 bDj, and to 0 otherwise.By De�nition 2.4, Pdi2Dj Bi is at most �j+1 
(T �j ) (with probability 1). The variable Ri isde�ned to be zero when di 2 bDj, and is equal to �j times the length `(di; Fj) of a shortestpath between di and a vertex of Fj. Sin
e the probability that di lies in bDj is pj = �j=�j+1,following the proof of Lemma 2.9 shows that the expe
ted 
ost E [PiRi℄ of the augmentationstep is at most 2 �E [PiBi℄, and hen
e is at most 2�j+1 �E [
(T �j )℄.We 
omplete the proof by showing that the expe
ted 
ost of the gathering and roundingsteps is at most �j+1E [
(T �j )℄. Intuitively, we will 
harge the expe
ted 
ost of these stepsto that of the earlier augmentation step. Lemma 5.1 ensures that the rerouting of residualdemands in the rounding step 
an be a

omplished using the 
ables of type j +1 pur
hasedin the subproblem step, and no new 
ables need to be built. For every edge e of G, one 
ableof type j was installed on e in the augmentation step of the jth stage for ea
h demand ofDj that used e to travel to a vertex of Fj. In the gathering and rounding steps, one 
able oftype (j + 1) is installed on e for ea
h su
h demand that is 
hosen for membership in the setDj+1. Re
all from the proof of Lemma 5.2 that for every demand d 2 Dj, the probabilitythat d is in
luded in Dj+1 is pre
isely uj=uj+1. The expe
ted 
ost of rerouting demands inthe gathering and rounding steps is therefore at mostujuj+1 � �j+1�j = Æj+1Æjtimes the expe
ted 
ost of the augmentation step. Sin
e Æj+1 � Æj=2, the expe
ted 
ost ofthe gathering and routing steps is at most �j+1E [
(T �j )℄. The lemma is proved. �Putting together our bounds on the expe
ted 
osts in
urred in the prepro
essing stepsand in all of the stages of the SSBaB-Sample-Augment algorithm implies that it is a
onstant-fa
tor approximation algorithm for the SSBaB problem.55
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Theorem 5.5 Algorithm SSBaB-Sample-Augment is a 76.8-approximation algorithmfor the SSBaB problem.Proof: Fix an optimal solution with 
ost OPT = Pj C�(j). By Lemmas 5.3 and 5.4, theexpe
ted 
ost in
urred by the algorithm in stages 1 through K � 1 is at mostK�1Xj=1 (3 + �)�j+1 �E [
(T �j )℄ = (3 + �) KXi=1 C�(i) � " i�1Xj=1 �j+1�i + KXj=i �j+1Æigj # :Re
alling that �j+1=gj = Æj for ea
h j and adding in the 
ost (38) of the prepro
essing stepthat produ
es unit-weight demands for stage 1, we get that the total expe
ted 
ost in
urredby the SSBaB-Sample-Augment algorithm after the initial rounding of 
able 
osts and
apa
ities and before stage K is at most(3 + �) KXi=1 C�(i) � " i�1Xj=0 �j+1�i + KXj=i ÆjÆi # :Sin
e �j+1 � 2�j and Æj+1 � Æj=2 for every j 2 f1; 2; : : : ; K � 1g, this 
ost is at most4(3 + �) �OPT .In the �nal stage K of the algorithm, we route demands of size uK to the sink t alongshortest paths, building 
ables of type K to support this 
ow. This 
ostsXd2DK �K � `(d; t);where `(d; t) denotes the length of a shortest d-t path in G. Sin
e every demand d 2 D0 withweight wd � 1 
orresponds to a demand of DK in the �nal stage with probability wd=uK(Lemma 5.2), the expe
ted 
ost of these 
ables of type K isXd2D0 wduK � �K � `(d; t) = ÆK Xd2D0wd`(d; t): (40)Sin
e ÆK is the smallest-possible in
remental 
ost, the right-hand side of (40) is a lowerbound on the 
ost of the optimal solution to I. Thus the expe
ted 
ost in the Kth stage ofthe SSBaB-Sample-Augment algorithm is at most OPT .Finally, our initial rounding of the 
able 
osts and 
apa
ities in
reases our approximationratio by a fa
tor of 4. The �nal approximation ratio of the SSBaB-Sample-Augment algo-rithm is thus 4 [4(3 + �) + 1℄. Using the Steiner Tree algorithm of Robins and Zelikovsky [58℄,we 
an take � = 1:55 to a
hieve an approximation ratio of 76.8. �6 Re
ent and Future WorkWe 
on
lude by dis
ussing re
ent resear
h motivated by the present paper and some dire
-tions for future work. 56
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6.1 Re
ent WorkThe initial publi
ation of our MRoB algorithm [34℄ led to two subsequent papers on theproblem. As dis
ussed in Remark 3.44, Be

hetti et al. [12℄ designed an alternative wayto for
e the AKR-GW algorithm to build additional edges, and used it and Theorem 2.10to give a 6.83-approximation algorithm for MRoB. Very re
ently, Fleis
her et al. [25℄ de-signed a (non-straightforward) 3-stri
t 
ost sharing method for the AKR-GW algorithm.In 
onjun
tion with the Sample-Augment algorithm and Theorem 2.10, this gives a 5-approximation algorithm for MRoB, the best that is 
urrently known. No improvements toour SSRoB algorithm have yet appeared in the literature, although Gupta, Srinivasan, andTardos [39℄ re
ently derandomized the algorithm. Their approa
h is based on an alternativeanalysis of the algorithm and results in a deterministi
 4.2-approximation algorithm, slightlybetter than the deterministi
 4.55-approximation algorithm of Swamy and Kumar [60℄.For buy-at-bulk problems, no improvement of our SSBaB algorithm is known. On theother hand, Charikar and Karagiozova [15℄ re
ently gave the �rst non-trivial approximationalgorithm for the generalization of the multi
ommodity buy-at-bulk network design problemin whi
h the 
on
ave 
apa
ity 
ost fun
tion (or, equivalently, the available 
able types) 
anvary from edge to edge. The algorithm in [15℄, inspired by the Sample-Augment algorithmof this paper, randomly in
ates the weight of demand pairs and then runs a greedy heuristi
.Two improvements of our VPND algorithm and analysis have re
ently been given. The�rst is a 4.74-approximation algorithm due to Eisenbrand and Grandoni [21℄, the se
ond a3.55-approximation algorithm of Eisenbrand et al. [22℄. Both papers are based on variationsof our algorithm and re�nements of our analysis.Most signi�
antly, our de�nition of stri
t 
ost shares has been generalized and appliedto give the �rst 
onstant-fa
tor approximation algorithms for several problems in sto
hasti
optimization. As an example, 
onsider the following Sto
hasti
 Steiner Tree problem. Theinput is a graph G with edges 
osts 
, a sink vertex t, a set S = fs1; : : : ; skg of sour
es, adistribution � over sets of sour
es and an \in
ation fa
tor" � > 1. The setup is as follows:an algorithm 
hooses a set F1 of edges in the �rst stage; a set bS � S of sour
es is 
hosenrandomly a

ording to �; and then the algorithm 
hooses a set F2 of edges so that F1 [ F2spans t and the sour
es of bS. The in
entive for sele
ting edges in the �rst stage (withoutknowledge of the realization bS) is that ea
h edge e 
osts 
e in the �rst stage but �
e inthe se
ond stage. The goal is to design an algorithm that 
hooses F1 and F2 in a way thatapproximately minimizes the expe
tation (over � and F2) of the total 
ost 
(F1) + �
(F2).Gupta et al. [37℄ showed that random sampling, a Steiner Forest subroutine that admitsa strengthened form of stri
t 
ost shares, and greedy augmentation 
an be used to obtain a3.55-approximation algorithm for the Sto
hasti
 Steiner Tree problem. The only assumptionon the distribution � in [37℄ is that independent samples of � 
an be drawn in polynomialtime. Gupta et al. [37℄ also obtained similar results for sto
hasti
 versions of the VertexCover and Un
apa
itated Fa
ility Lo
ation problems. Earlier approximation algorithms forthese problems both had weaker performan
e guarantees and imposed additional restri
tionson the distribution � [42, 57℄. Stri
t 
ost shares and generalizations have sin
e been usedto design 
onstant-fa
tor approximation algorithms for many other sto
hasti
 optimizationproblem [36, 38, 41℄. 57
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6.2 Future Dire
tionsWe 
on
lude the paper with several suggestions for future resear
h.1. An obvious open question is to narrow the gap between the best approximation andinapproximability results for all of the problems studied in this paper. In parti
ular,are any of these problems provably harder than the Steiner Tree problem (assumingP 6= NP )?2. A more modest goal is to understand the limitations of our analysis framework inSe
tion 2. For example, is the guarantee in Theorem 2.10 the best possible? Is itpossible to re�ne the de�nition of stri
t 
ost shares and sharpen this guarantee?3. Can the ideas in our MRoB and SSBaB algorithms be 
ombined to yield an approxima-tion algorithm for the multi
ommodity buy-at-bulk problem? While re
ent results ofAndrews [2℄ rule out 
onstant-fa
tor approximation algorithms under reasonable 
om-plexity assumptions, our te
hniques might give an O(logn)-approximation algorithmfor the problem that does not resort to probabilisti
 tree embeddings [9, 23℄.4. Can the 
onstant-fa
tor approximation algorithm for Sto
hasti
 Steiner Tree in [37℄ beextended to the sto
hasti
 version of the Steiner Forest problem? Su
h an extensionwould follow from a strengthened version of our stri
t 
ost shares in Subse
tion 3.3.5. Only our SSRoB algorithm has been derandomized [39℄. Can our other algorithms alsobe derandomized?Referen
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A Proof of Lemma 3.19Proof of Lemma 3.19: Fix a Steiner Forest instan
e (G;D). A time � is interesting if � = 0, ifthe 
-AKR-GW algorithm merges two 
lusters at time � , or if a 
luster be
omes dea
tivatedat time � . Call the time in between 
onse
utive interesting moments an epo
h. Let Ci denotethe set of a
tive 
lusters during the ith epo
h. In the ith epo
h, the dual variables of all ofthe 
lusters in Ci are raised by some 
ommon amount, whi
h we denote by �i. From thede�nitions, we have zS = Xi :S2Ci�i (41)for every possible 
luster S � V andXS�V zS = pXi=1 �ijCij; (42)where p is the number of epo
hs.Let F be the Steiner forest output by the algorithm. The key 
laim is the following: inevery epo
h i, XS2Ci jF \ Æ(S)j � 2jCij: (43)In other words, at every moment in time, an average a
tive 
luster only interse
ts two edgesof the �nal output F .To prove (43), �x an epo
h i and obtain the graphH from the graph (V; F ) by 
ontra
tingea
h 
luster (a
tive or ina
tive) of epo
h i into a single vertex. Thus the verti
es of H
orrespond to the 
lusters in the ith epo
h, and the edges of H are the edges of F that spantwo of these 
lusters. We will 
all the verti
es of H a
tive or ina
tive a

ording to the statusof the 
orresponding 
luster of G in the ith epo
h. The inequality (43) is equivalent to theassertion that the average degree of the a
tive verti
es of H is at most 2.First, sin
e the edges of F are tight edges, and the 
-AKR-GW algorithm maintainsthe invariant that 
lusters 
orrespond to 
onne
ted 
omponents of the set of tight edges,Lemma 3.17 implies that the graph H is a
y
li
. Se
ond, we 
laim that no ina
tive vertexof H has degree 1. This 
laim follows from the delete step of the 
-AKR-GW algorithm.To see this, 
onsider a 
luster S that is ina
tive during the ith epo
h. By the de�nitionof the 
-AKR-GW algorithm, all demands in S must be ina
tive at this and all futuremoments in time. Sin
e the algorithm only merges 
lasses of the demand partition that
ontain 
urrently a
tive verti
es, in the �nal partition P, no partition 
lass will 
ontainboth a demand from S and a demand from outside S. If the vertex of H 
orresponding tothis 
luster has degree 1, then there is an edge e of F whose removal 
an only disrupt the
onne
tivity of demand pairs with one demand in S and the other outside S. Thus edge eis not essential for P-
onne
tivity, and should have been removed in the delete step of the
-AKR-GW algorithm.These two 
laims easily imply (43). Obtain eH from H by dis
arding all the isolatedina
tive verti
es. Sin
e eH is a
y
li
, the average degree of verti
es of eH is at most 2.64
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Moreover, ina
tive verti
es of eH all have degree at least 2. The a
tive verti
es of eH (and H)thus have average degree at most 2.Having established (43), we 
an now bound the 
ost of F as follows:Xe2F 
e = Xe2F XS�V : e2Æ(S) zS (44)= XS�V zS � jF \ Æ(S)j= pXi=1 �i XS2Ci jF \ Æ(S)j (45)� pXi=1 �i � 2jCij (46)= 2XS�V zS; (47)where (44) follows from the fa
t that all edges of F are tight, equation (45) follows from (41),inequality (46) follows from (43), and equation (47) follows from (42). �
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