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1 IntrodutionWe present onstant-fator approximation algorithms for several widely-studied NP-hardoptimization problems in network design. Our algorithms are extremely simple and havethe following avor: randomly sample a simpler subproblem, solve the subproblem with anexisting algorithm, and greedily extend the subproblem solution to a solution feasible forthe original problem. The approximation ratios of our algorithms improve over all of thosepreviously known, in some ases by orders of magnitude.We develop a general analysis framework to bound the approximation ratios of our al-gorithms. This framework is based on a novel onnetion between random sampling andost sharing, the task of alloating the ost of an objet to many users of the objet in a\fair" manner. Spei�ally, we de�ne the notion of strit ost shares, and show that suhost shares provide a powerful tool for analyzing the performane of a lass of random sam-pling algorithms. While tehniques from approximation algorithms have reently yieldednew progress on ost sharing problems, our work is the �rst to show the onverse|thatideas from ost sharing an be fruitfully applied in the design and analysis of approximationalgorithms.1.1 Four Network Design ProblemsTo desribe our results more onretely, we de�ne the three primary network design problemsthat we onsider in this paper. We disuss the motivation for and prior work on theseproblems in Subsetion 1.3 below.Problem 1.1 (Multiommodity Rent-or-Buy) An instane of themultiommodity rent-or-buy (MRoB) problem is de�ned by an undireted graph G = (V;E) and a set D =f(si; ti)gki=1 of vertex pairs alled demand pairs, where eah edge e 2 E has a nonnegativeost e and eah demand pair (si; ti) has a nonnegative weight wi. The goal is to omputea minimum-ost way of installing suÆient apaity on the edges E so that wi units of owan be sent simultaneously from eah soure si to the orresponding sink ti. The ost ofinstalling apaity on an edge is given by a simple onave funtion: apaity an be rented,with ost inurred on a per-unit of apaity basis, or bought, whih allows unlimited use afterpayment of a large �xed ost. Preisely, there are positive parameters � and M , with theost of renting apaity equal to � times the apaity required (per unit length), and theost of buying in�nite apaity equal to M (per unit length). By saling, we an assumethat � = 1 without loss of generality. We denote an MRoB instane by a tuple (G;D; w;M),leaving the ost vetor  impliit.We will also study the speial ase of single-sink rent-or-buy (SSRoB), where all demand pairs(si; ti) share a ommon sink vertex t, and the more general multiast rent-or-buy problem(MuRoB), where there are arbitrary demand groups instead of demand pairs.Problem 1.2 (Virtual Private Network Design) In an instane of virtual private net-work design (VPND), we are again given an undireted graph G with nonnegative edge osts. There is also a set D of demands, eah of whih is loated at a vertex of G. Eah demand2
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j 2 D possesses two nonnegative thresholds bin(j) and bout(j). These thresholds speify themaximum amount of traÆ that demand j will reeive from and send to other demands,respetively. A D �D matrix desribing the amount of (direted) traÆ between eah pairof demands is valid if it respets all thresholds. A feasible solution to an instane of VPNDis spei�ed by a path Pij for eah (ordered) demand pair (i; j) and by a apaity ue for eahedge e, suh that there is suÆient apaity to route every valid traÆ matrix via the pathsfPijg. The objetive is to �nd a feasible solution minimizing the ost Pe2E eue. We denotean instane of VPND by the triple (G;D; b).Problem 1.3 (Single-Sink Buy-at-Bulk) The single-sink buy-at-bulk network design (SS-BaB) problem is a generalization of the SSRoB problem. The input is the same as in thelatter problem, exept that instead of a single parameter M desribing the ost of buying,there are K types of ables. A able of type i has a given apaity ui and a given ost (perunit length) �i. As in the SSRoB problem, the goal is to ompute a minimum-ost way ofinstalling suÆient apaity on the edges so that a presribed amount of ow wi an be sentsimultaneously from eah soure si to the ommon sink t.The following simpler network design problem arises frequently as a subroutine in ouralgorithms.Problem 1.4 (Steiner Forest) An instane of the Steiner Forest problem is given by anundireted graph G with nonnegative edge osts  and a set D = f(si; ti)gki=1 of demandpairs. The goal is to ompute a minimum-ost subgraph of G that ontains an si-ti path forevery i 2 f1; 2; : : : ; kg. We denote suh a Steiner Forest instane by (G;D).The Steiner Forest problem is equivalent to the speial ase of the MRoB problem whereM = 1. If all demand pairs of a Steiner Forest instane have a ommon sink, then itis equivalent to an instane of the well-known Steiner Tree problem. All of the problemsstudied in this paper ontain Steiner Tree as a speial ase.Reall that an �-approximation algorithm for a minimization problem runs in polynomialtime and returns a solution no more than � times as ostly as an optimal solution. Thevalue � is the approximation ratio or performane guarantee of the algorithm. Sine eventhe Steiner Tree problem is MAX-SNP-hard [13℄, Problems 1.1{1.3 annot be solved exatlyor approximated to within an arbitrarily small onstant fator in polynomial time, assumingP 6= NP [4℄. We are therefore justi�ed in seeking onstant-fator approximation algorithmsfor these problems, with the onstant as small as possible.1.2 Overview of ResultsOur main results are the following.� We develop an analysis framework that shows that random sampling, a Steiner Forestsubroutine, and greedy augmentation leads to a onstant-fator approximation algo-rithm for the MRoB problem, provided the subroutine admits what we all strit ostshares (de�ned in Setion 2). 3
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Problem Studied Previously Best Approximation This PaperMRoB over 1000 [50℄ 6.83MuRoB O(logn) [5, 23℄ 12.66SSRoB 4.55 [60℄ 3.55VPND O(logn) [23, 33℄ 5.55SSBaB 216 [61℄ 76.8Table 1: Main results of this paper. \Previously best approximation" refers to the smallestapproximation ratio known prior to the onferene versions of our work [34, 35, 36℄. Theparameter n denotes the number of network verties.� We modify, in a simple but novel way, the well-known primal-dual Steiner Forest algo-rithm of Agrawal, Klein, and Ravi [1℄ and Goemans and Williamson [29℄ so that it ad-mits strit ost shares. Combining this result with the one above, we obtain a random-ized approximation algorithm forMRoB with an approximation ratio of 4+2p2 � 6:83.� We extend this algorithm and analysis to obtain a 12.66-approximation algorithm forthe MuRoB problem.� For the SSRoB problem, we show that every Steiner Tree algorithm admits strit ostshares and obtain a randomized 3.55-approximation algorithm.� For the VPND problem, we build on our SSRoB algorithm and analysis to obtain arandomized 5.55-approximation algorithm.� We ombine ideas from our SSRoB algorithm and analysis with an SSBaB algorithmof Guha, Meyerson, and Munagala [32℄ to obtain a randomized 76.8-approximationalgorithm for the SSBaB problem.Prior to our work, the best-known approximation ratios for the MRoB, MuRoB, SSRoB,VPND, and SSBaB problems were over 1000 [50℄; O(logn), where n is the number of networkverties [5, 23℄; 4.55 [60℄; O(logn) [23, 33℄; and 216 [61℄, respetively. See also Table 1.Our onstant-fator approximation algorithm for the VPND problem answers the main openquestions of Gupta et al. [33℄.Finally, our 6.83-approximation algorithm for MRoB gives qualitatively new informationabout the relative tratability of di�erent network design problems with eonomies of sale.Spei�ally, for many years even the simplest suh problems with multiple ommodities (likeMRoB) seemed more diÆult than relatively omplex single-sink network design problems(suh as SSBaB). Our MRoB algorithm shows that this state of a�airs arose only beause ofa lak of a good algorithm for MRoB, not beause of the problem's intrinsi diÆulty.1.3 Related WorkThe literature on approximation algorithms for NP-hard network design problems is vast,and we will only disuss work that is diretly related to the problems studied in this paper. In4
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this subsetion, we only disuss researh that ourred prior to or independent of the presentwork. Sine the publiation of preliminary versions of the results in this paper [34, 35, 36℄,there has been muh researh on further appliations, generalizations, and improvements ofour algorithms and analysis tehniques. We survey this reent researh in Setion 6.1.3.1 Rent-or-Buy Network DesignRent-or-buy problems have long served as a simple model of network design with eonomiesof sale|where the per-unit ost of installing apaity on an edge dereases as more apaityis installed. They also arise naturally in other appliations, inluding stohasti optimizationproblems [45, 50℄ and faility loation problems [50, 60℄.For many years, the best algorithm known for theMRoB problem was anO(logn log logn)-approximation algorithm, where n denotes the number of network verties, due to Awerbuhand Azar [5℄ and Bartal [9℄. (Reent work by Fakharoenphol, Rao, and Talwar [23℄ an beused to improve the approximation ratio of this algorithm to O(logn).) The �rst onstant-fator approximation algorithm for the problem is due to Kumar, Gupta, and Roughgar-den [50℄. However, both the analysis and the primal-dual algorithm of [50℄ are quite ompli-ated, and the performane guarantee shown for the algorithm is, while onstant, extremelylarge. This onstant was neither optimized nor estimated in [50℄, but it is at least 1000. OurMRoB algorithm is the �rst onstant-fator approximation algorithm for the problem thatis simple or that has a reasonably small onstant performane guarantee.The SSRoB speial ase or MRoB, and the losely related onneted faility loationproblem, have been extensively studied in the operations researh literature [47, 51, 52℄ andby the omputer siene ommunity [33, 45, 46, 56, 60℄. Karger and Minko� [45℄, motivatedby the so-alled maybeast problem, gave the �rst onstant-fator approximation algorithmfor the problem. This algorithm is simple and ombinatorial, but has a relatively largeperformane guarantee. Gupta et al. [33℄ subsequently employed an LP-rounding approahto improve the approximation ratio. Prior to our work, the best algorithm for the problemwas the primal-dual 4.55-approximation algorithm due to Swamy and Kumar [60℄.Finally, our random sampling approah to the MRoB problem is reminisent of and par-tially inspired by previous work that gave online algorithms with polylogarithmi ompetitiveratios for many rent-or-buy-type problems [6, 7, 10, 11℄.1.3.2 Virtual Private Network DesignThe virtual private network design problem onsidered in this paper was de�ned by Fin-gerhut et al. [24℄ and, subsequently and independently, by DuÆeld et al. [20℄. The modelis motivated by the many diÆulties in estimating or assuming knowledge of a �xed traÆmatrix for a network (see [20, 24℄). The VPND problem was later studied by Gupta et al. [33℄with an eye toward approximation algorithms.Prior to our work, the best known algorithm for the VPND problem was a straightfor-ward appliation of probabilisti tree embeddings [23℄, whih only guarantees a O(logn)-approximation, where n is the number of verties. For the speial ase of VPND wherebin(j) = bout(j) for every demand j 2 D, a 2-approximation is known [24, 33℄. Also, Gupta5
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et al. [33℄ gave a 10-approximation algorithm for the speial ase of the VPND problem inwhih the the union of the routing paths fPijgi;j2D is required to form a tree.1.3.3 Buy-at-Bulk Network DesignRent-or-buy problems are a speial ase of buy-at-bulk network design, where the goal isthe same but the ost of installing apaity is given by an arbitrary onave funtion (or,nearly equivalently, by a set of able types). Buy-at-bulk network design has been intenselystudied over the last several years. After the problem was introdued by Salman et al. [59℄,a long line of papers have presented suessively superior algorithms for inreasingly generalversions of the problem.For the SSBaB problem onsidered here (Problem 1.3), the �rst non-trivial approximationwas found by Awerbuh and Azar [5℄, using the tree embeddings of Bartal [8℄, and the �rstonstant-fator approximation algorithm was given by Guha, Meyerson, and Munagala [32℄.The performane guarantee of the ombinatorial algorithm in [32℄ was not stated expliitly,though Talwar [61℄ estimated it to be roughly 2000. Talwar [61℄ subsequently gave an LP-rounding algorithm with an improved performane guarantee of 216, the best known beforeour work.Many researhers have studied other types of single-sink network design problems witheonomies of sale, inluding the more speialized Aess Network Design problem [3, 31,32, 54℄, and the generalizations of SSBaB in whih the apaity ost funtion an be edge-dependent [16, 53℄ or unknown to the algorithm [28℄. The best known approximation ratiosfor these three problems are 68 [54℄, O(logn) [16, 53℄, and O(logn) [28℄, respetively. Reentresults of Chuzhoy et al. [17℄ rule out onstant-fator approximation algorithms for the seondproblem under reasonable omplexity-theoreti assumptions.For the multiommodity buy-at-bulk network design problem, the best known approxima-tion ratio is O(logn), whih follows from ombining the algorithm of Awerbuh and Azar [5℄with the probabilisti tree embeddings given by Fakharoenphol, Rao, and Talwar [23℄. An-drews [2℄ reently proved that, under reasonable omplexity-theoreti assumptions, there isno onstant-fator approximation algorithm for this problem. Very reently, Charikar andKaragiozova [15℄ gave the �rst non-trivial approximation algorithm for the generalization ofthis problem in whih the onave apaity ost funtion an vary from edge to edge.1.3.4 Steiner ForestThe �rst non-trivial approximation algorithm for the Steiner Forest problem was the 2-approximation algorithm due to Agrawal, Klein, and Ravi [1℄. Subsequently, Goemans andWilliamson [29, 30℄ reinterpreted the algorithm and analysis of [1℄, and generalized them to awide lass of network design problems. Very reently, K�onemann, Leonardi, and Sh�afer [49℄gave a somewhat di�erent 2-approximation algorithm for the Steiner Forest problem. Theiralgorithm is related to the Steiner Forest algorithm that we present in Subsetion 3.3.
6
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1.3.5 Cost SharingCost sharing has long been a fundamental subjet in game theory and eonomis; see e.g. [63℄and the referenes therein. Our de�nition of strit ost-sharing methods in Setion 2 issomewhat reminisent of well-known onepts in ooperative game theory, inluding theore and the nuleolus. However, we are not aware of any work in the game theory literaturethat studies our notion of strit ost sharing.Tehniques from approximation algorithms have reently yielded new progress on severalost-sharing problems [39, 43, 44, 49, 55℄. We believe the present work to be the �rst showingthat ideas from ost sharing an lead to better approximation algorithms.1.4 Paper OrganizationSetion 2 presents our analysis framework, de�nes strit ost shares, and proves that randomsampling, a Steiner Forest subroutine that admits strit ost shares, and greedy augmentationleads to a onstant-fator approximation algorithm for MRoB. Setion 3 applies this frame-work to the SSRoB, MRoB, and MuRoB problems. In Setion 4, we build on our SSRoBalgorithm and analysis and design a onstant-fator approximation algorithm for the VPNDproblem. Setion 5 applies our analysis tools to the SSBaB problem. Setions 3{5 all logiallydepend on the onepts in Setion 2. Setions 4 and 5 also depend on Subsetion 3.1, thoughSetions 3{5 are otherwise independent. Finally, Setion 6 disusses reent work motivatedby this paper and possible diretions for future researh.2 The Analysis FrameworkThis setion desribes our high-level algorithm and analysis framework for the MRoB prob-lem. Subsetion 2.1 presents our MRoB algorithm. Subsetion 2.2 bounds its expeted ostwhen solving a randomly sampled subproblem. Subsetion 2.3 de�nes strit ost shares, andSubsetion 2.4 uses them to bound the expeted ost of the greedy augmentation step of ourMRoB algorithm.2.1 Random Sampling and Greedy AugmentationOur algorithm for the MRoB problem is given in Figure 1. It �rst randomly samples a subsetof demand pairs, with probabilities proportional to weights and inversely proportional to theratioM of the buying and renting osts. It then buys apaity on edges so that eah demandpair in the random sample is onneted by an in�nite-apaity path. Finally, our algorithmaugments the apaity of the bought edges by greedily renting apaity for all demand pairsthat did not partiipate in the random sample.The sampling step in Figure 1 is self-explanatory. For the subproblem step, we willemploy an algorithm that is a good approximation algorithm for Steiner Forest and alsosatis�es an additional property that we desribe in Subsetion 2.3 below. We implement theaugmentation step as follows. After the subproblem step, every demand pair (si; ti) in thesubset S is onneted by a path of (in�nite-apaity) bought edges in F . Let G=F denote7
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Input: an MRoB instane (G;D; w;M).1. (Sampling step) Choose a random subset S � D of demand pairs, by inluding eahpair (si; ti) 2 D in S independently with probability minfwi=M; 1g.2. (Subproblem step) Compute a feasible solution F to the Steiner Forest instane (G;S),and buy (in�nite) apaity on the edges of F .3. (Augmentation step) Greedily rent apaity to produe a feasible solution.Figure 1: The algorithm Sample-Augment.the graph obtained from G by ontrating all of the edges of F . Independently for eahdemand pair (si; ti) =2 S, we ompute a shortest si-ti path bPi of G=F , and rent wi unitsof apaity on eah edge of bPi that are reserved for exlusive use by (si; ti). Eah path bPiorresponds to an si-ti path Pi of G, where eah edge of Pi either has in�nite apaity orhas wi units of apaity reserved for the demand pair (si; ti). The augmentation step thusinstalls suÆient apaity for all of the demand pairs to simultaneously route their traÆ onthe paths fPigki=1.The following lemma will be used in the next subsetion and also motivates the Sample-Augment algorithm.Lemma 2.1 For every MRoB instane, there is an optimal solution suh that the ow ofeah demand pair an be routed on a single path.Proof: Fix an arbitrary MRoB instane (G;D; w;M) and an optimal solution for it. Let Fdenote the edges on whih the optimal solution buys in�nite apaity. This optimal solutionmust also, independently for eah demand pair (si; ti), reserve wi units of apaity on si-tipaths of the ontrated graph G=F . The minimum-ost way to aomplish this is to rentwi units of apaity for eah demand pair (si; ti) on a shortest si-ti path of G=F , as in theaugmentation step of the Sample-Augment algorithm. Applying this augmentation stepto the set F thus results in an optimal solution in whih the traÆ of eah demand pair anbe routed on a single path. �The proof of Lemma 2.1 shows that the augmentation step of the algorithm Sample-Augment extends the subproblem solution into a feasible solution in an optimal way. Therux of the MRoB problem is to identify a good set of edges on whih to buy in�nite apaity.We will show that the random Steiner Forest instane de�ned by the sampling step of theSample-Augment algorithm leads to suh a good set of edges.The rest of this setion is devoted to proving that, provided the right type of SteinerForest algorithm is used in the subproblem step, the algorithm Sample-Augment is a goodapproximation algorithm for MRoB. In Setion 3 we design algorithms for Steiner Forest thatpossess the requisite properties.
8
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2.2 Bounding the Subproblem CostAlgorithm Sample-Augment inurs ost both in the subproblem step (for buying apaity)and in the augmentation step (for renting apaity). We �rst prove a key lemma that is usefulfor bounding both of these osts. The lemma states that, in expetation, there is a low-ostsolution to the random Steiner Forest instane solved in the subproblem step of the algorithmSample-Augment.Lemma 2.2 For every instane I = (G;D; w;M) of MRoB,E [OPTS℄ � OPTMRoBM ; (1)where OPTMRoB is the ost of an optimal solution for I, OPTS is the ost of an optimalsolution for the Steiner Forest instane (G;S), and the expetation is over the random sampleS hosen in the sampling step of the algorithm Sample-Augment.Proof: Fix an instane I of MRoB. We prove (1) by exhibiting one feasible solution for eahpossible Steiner Forest instane (G;S), suh that the expeted ost (over S) of this solutionis at most OPTMRoB=M . Sine this goal is only for the analysis, and is independent of thealgorithm Sample-Augment, we an freely make use of an optimal solution for I. ByLemma 2.1, we an onsider an optimal solution that routes all of the traÆ of eah demandpair (si; ti) 2 D on a single path P �i . For an edge e, let x�e =Pi : e2P �i wi denote the amountow routed on the edge e. Let Eb denote the edges e with x�e � M and Er the rest of theedges. The ost OPTMRoB of the optimal solution isOPTMRoB = Xe2Eb eM + Xe2Er ex�e: (2)To prove (1), �x a possible random sample S � D, and de�ne a Steiner forest FS byFS = Eb [ [(si;ti)2S P �i :Note that FS onsists of one part (Eb) that does not depend on S, and one part ([(si;ti)2SP �i )that does, and is ertainly a feasible solution for the Steiner Forest instane (G;S). The ostof the �rst part is deterministially (Eb) = Pe2Eb e, a fator of M less than the ostinurred by the optimal solution for I for buying apaity on these edges. The expeted ostof the seond part is a fator of M less than the ost inurred by the optimal solution forrenting apaity, beause we inlude a demand pair (si; ti) in the sample S with probabilityonly wi=M . Formally, we bound the expeted ost of FS as follows:E [(FS)℄ = E [(Eb)℄ +E � �Er \ �[(si;ti)2SP �i ���= (Eb) + Xe2Er e �Pr �e 2 [(si;ti)2sP �i �� (Eb) + Xe2Er e Xi : e2P �i Pr[(si; ti) 2 S℄= (Eb) + Xe2Er e x�eM ;9
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where the inequality follows from the Union Bound. Thus the expeted ost of FS is at mostthe ost of an optimal solution (2) divided by M . Sine E [OPTS℄ � E [(FS)℄, this provesthe lemma. �Lemma 2.2 easily implies that the expeted ost of the subproblem step of Sample-Augment is small provided a good approximation algorithm for Steiner Forest is used.Lemma 2.3 If an �-approximation algorithm for Steiner Forest is used in the subproblemstep of Sample-Augment, then the expeted ost inurred in this step is at most � timesthe ost of an optimal MRoB solution.Proof: Fix an arbitrary instane I of MRoB. Let A be the �-approximation algorithm usedin the subproblem step of Sample-Augment. The ost inurred in this step is M timesthat of the Steiner forest F returned by A, sine Sample-Augment buys in�nite apaityon the edges of F . This ost is at most M �� �OPTS for every possible random sample S ofdemand pairs. The expeted ost is thus at most M � � � E [OPTS℄, whih by Lemma 2.2 isat most � �OPTMRoB. �The next two subsetions undertake the more hallenging task of bounding the expetedost of the augmentation step of the Sample-Augment algorithm.2.3 Strit Cost SharesOur analysis of the expeted ost of the augmentation step of the Sample-Augment al-gorithm hinges on a type of ost sharing for the Steiner Forest problem. We next de�newhat we all strit ost shares. While our de�nition is motivated solely by our analysis ofSample-Augment, it an also be interpreted as formalizing a natural approximate fairnessondition.The next de�nition states that a ost-sharing method is a way of alloating ost to thedemand pairs of a Steiner Forest instane (G;D), with the total ost alloated bounded aboveby that of a minimum-ost Steiner forest for (G;D).De�nition 2.4 Let � be a funtion that, for every instane I = (G;D) of Steiner Forest,assigns a nonnegative real value �(I; (si; ti)) to every demand pair (si; ti) 2 D. The funtion� is a (Steiner forest) ost-sharing method if, for every suh instane I,X(si;ti)2D�(I; (si; ti)) � OPT (I); (3)where OPT (I) is the ost of an optimal solution to I.De�nition 2.4 permits some rather uninteresting ost-sharing methods, inluding thefuntion that always assigns all demand pairs zero ost. The key additional property thatwe require of a ost-sharing method is that, intuitively, it alloates eah demand pair aost share ommensurate with its distane from the edges needed to onnet all of theother demand pairs. Put di�erently, no demand pair an be a \free rider," imposing a large10
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burden in building a Steiner forest, but only reeiving a small ost share. We all ost sharingmethods with this property strit. Strit ost shares will allow us to harge, in a demandpair-by-demand pair fashion, a onstant fration of the expeted ost of the augmentationstep of Sample-Augment to the expeted ost of an optimal solution to the Steiner Forestsubproblem. We have already bounded the latter ost in Lemma 2.2.To make this idea preise, we require further notion. Let `G(u; v) denote the length of ashortest path between the verties u and v in the graph G (with respet to the edge ostsof G). As in Subsetion 2.1, for a graph G and a set of edges F of G, G=F denotes thegraph obtained from G by ontrating all of the edges of F . As in the augmentation step ofthe algorithm Sample-Augment, the minimum per-unit ost of renting apaity betweensi and ti, given that in�nite apaity has already been bought on the edges in F , is preisely`G=F (si; ti). Our main de�nition is then the following.De�nition 2.5 Let A be a deterministi algorithm for the Steiner Forest problem. A Steinerforest ost-sharing method � is �-strit for A if for all instanes I = (G;D) and for alldemand pairs (si; ti) 2 D, `G=F (si; ti) � � � �(I; (si; ti));where F is the Steiner forest returned for the instane (G;Dnf(si; ti)g) by the algorithm A.Remark 2.6 De�nition 2.4 makes no referene to an algorithm for Steiner Forest, but De�-nition 2.5 does. Thus a Steiner forest ost-sharing method an be �-strit for one algorithmand not for another. For example, every ost-sharing method is strit with respet to the(highly suboptimal) algorithm that always returns the entire graph G as the Steiner forest so-lution F . Our hallenge will be to give a strit ost-sharing method for a good approximationalgorithm for Steiner Forest.We say that an algorithm is strit if it admits a strit ost-sharing method.De�nition 2.7 An algorithm A for the Steiner Forest problem is �-strit if there exists aost-sharing method that is �-strit for A.Strit ost shares will pay dividends in Lemma 2.9 below, where we show that they are thekey property of a Steiner Forest algorithm that allows us to bound the expeted augmentationost of the algorithm Sample-Augment.Example 2.8 (Prim Cost Shares) We now give an example of a strit ost-sharing methodfor the speial ase of the SSRoB problem, where all demand pairs share the same sink vertext. In this ase, the subproblem step is an instane (G;S) of Steiner Tree, where we mustoutput a set F of edges spanning t and all of the soure verties si in demand pairs of S.Suppose we use the well-known MST heuristi as our Steiner Tree algorithm A, implementedwith Prim's MST algorithm (see e.g. [62℄). In more detail, we iteratively build up a feasiblesolution to (G;S) as follows. Initially, set D = ftg and F = ;. At eah iteration, among allsoures in a demand pair of S but not in D, �nd the soure si losest to some soure or sinkalready in D; add si to D; and add to F a shortest path between si and its nearest neighborin D. 11
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For an instane I = (G;S) of Steiner Tree, de�ne the ost share �(I; (si; t)) of (si; t) ashalf of the length of the shortest path used in the iteration of the algorithm that adds si toD. We all these Prim ost shares. We laim that the funtion � satis�es both De�nition 2.4and De�nition 2.5 with � = 2. De�nition 2.4 is met beause the sum of all of the ost sharesis exatly half of the ost of the Steiner tree output by the MST heuristi, whih in turn isat most twie the ost of a minimum-ost Steiner tree (see e.g. [62℄).To see why the ost shares � are 2-strit for the algorithmA, onsider an arbitrary SteinerTree instane I = (G;S) and demand pair (si; t) 2 S. Consider running the algorithm Ain parallel on the instanes I and bI = (G;S n f(si; t)g). The key observation is this: thesetwo exeutions of A are idential, until the demand pair (si; t) of I is onsidered. In otherwords, if A hooses (si; t) in iteration j � 1 of its exeution for the original instane I, thenthe partial solution Fj�1 that A has onstruted after j � 1 iterations is the same in bothexeutions of the algorithm. Suppose when algorithmA is run on the instane I, it onnetssi to Fj�1 via the path P , where P is a shortest path between si and some previously addedsoure or sink. Sine A's �nal solution bF to the instane bI inludes Fj�1, the shortest-pathdistane `G= bF (si; t) is at most the ost (P ) of P . Sine the ost share �(I; (si; t)) is preisely(P )=2, De�nition 2.5 is satis�ed with � = 2.2.4 Bounding the Augmentation CostThe de�nition of strit ost shares is engineered so that the following upper bound on theexpeted augmentation ost of the algorithm Sample-Augment holds.Lemma 2.9 If a �-strit algorithm for Steiner Forest is used in the subproblem step ofSample-Augment, then the expeted ost inurred in the augmentation step of Sample-Augment is at most � times the ost of an optimal MRoB solution.Proof: Suppose the �-strit Steiner Forest algorithm A is used in the subproblem step of thealgorithm Sample-Augment and �x an MRoB instane (G;D; w;M). For eah demandpair (si; ti) 2 D, we de�ne two random variables. First, the random variable Ri (\rentingost") has value 0 if (si; ti) is inluded in the random sample S, and otherwise has value equalto the renting ost wi � `G=F (si; ti) aused by (si; ti) in the augmentation step, where F is theSteiner Forest solution returned by A for the instane (G;S). Seond, the random variableBi (\buying ost") has valueM ��((G;S); (si; ti)) if (si; ti) is inluded in the random sampleS and 0 otherwise. Note that the ost inurred by Sample-Augment in the augmentationstep is preisely the total renting ost PiRi. The total buying ost satis�eskXi=1 Bi = X(si;ti)2SM � �((G;S); (si; ti)) �M �OPT (G;S); (4)where the inequality follows from De�nition 2.4. Lemma 2.2 then implies that the expetedtotal buying ost is at most the ost OPTMRoB of an optimal solution to (G;D; w;M):E " kXi=1 Bi# � OPTMRoB: (5)12
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The rest of the proof shows how to use strit ost shares to harge, up to a fator of �, theexpeted renting ost inurred by Sample-Augment to the expeted buying ost.Fix a demand pair (si; ti). Condition on the set S � D n f(si; ti)g of other demand pairsthat Sample-Augment inludes in its random sample. Let bS denote S[f(si; ti)g. Thus thesubproblem step will involve either the Steiner Forest instane bI = (G; bS) (with probabilityminfwi=M; 1g) or the instane I = (G;S) (with the remaining probability). The expetedrenting ost inurred by (si; ti), onditioned on S, an therefore be rudely bounded byE [RijS℄ = �1�minnwiM ; 1o� � wi � `G=F (si; ti) � minfwi;Mg � `G=F (si; ti); (6)where F is the output of A for the Steiner Forest instane I. The expeted buying ost isE [BijS℄ = minnwiM ; 1o �M � �(bI; (si; ti)) = minfwi;Mg � �(bI; (si; ti)): (7)Strit ost shares provide the key relation between renting and buying osts. Spei�ally,sine A is �-strit, inequality (6) and equation (7) imply thatE [RijS℄ � � �E [BijS℄:Sine this inequality holds for every set S � D n f(si; ti)g, it also holds unonditionally:E [Ri℄ � � �E [Bi℄:Linearity of expetations and inequality (5) omplete the proof:E " kXi=1 Ri# � � �E " kXi=1 Bi# (8)� � �OPTMRoB:� Lemmas 2.3 and 2.9 immediately imply the main result of this setion: Sample-Augmentis a good approximation algorithm forMRoB, provided a good, strit Steiner Forest algorithmis used in the subproblem step.Theorem 2.10 If a �-strit �-approximation algorithm for Steiner Forest is used in thesubproblem step of Sample-Augment, then Sample-Augment is a randomized (� + �)-approximation algorithm for MRoB.3 Rent-or-Buy ProblemsWe next apply the analysis framework of Setion 2, and Theorem 2.10 in partiular, toseveral rent-or-buy problems. We begin in Subsetion 3.1 with the speial ase of the SSRoBproblem, and show how the results of Setion 2 easily give a simple algorithm with a betterperformane guarantee than all previously known approximation algorithms for the problem.13
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We then onsider the more general MRoB problem. We �rst show (Subsetion 3.2) thatthe well-known primal-dual 2-approximation approximation algorithm for the Steiner Forestproblem [1, 29℄ does not admit simple O(1)-strit ost shares. In Subsetion 3.3 we modifythis algorithm so that it remains an O(1)-approximation algorithm for Steiner Forest and alsoadmits simple O(1)-strit ost shares, whih leads to an O(1)-approximation algorithm forMRoB via Theorem 2.10. Finally, Subsetion 3.4 extends our MRoB algorithm and analysisto the MuRoB problem.3.1 Single-Sink Rent-or-BuyA good approximation algorithm for the SSRoB problem follows immediately from the Primost shares of Example 2.8 and Theorem 2.10. Spei�ally, in Example 2.8 we argued thatthe MST heuristi is a 2-approximation algorithm for the Steiner Tree problem and admits2-strit ost shares. Theorem 2.10 then implies the following.Theorem 3.1 Algorithm Sample-Augment, with the subproblem step implemented withthe MST heuristi, is a 4-approximation algorithm for the SSRoB problem.Theorem 3.1 already improves over the previously best algorithm for the SSRoB problem,the primal-dual 4.55-approximation algorithm of Swamy and Kumar [60℄.We an ahieve a slightly better approximation ratio by re�ning De�nition 2.5 and The-orem 2.10 for the SSRoB problem. For the rest of this subsetion, we all a soure or sink ofa Steiner Tree instane a demand.De�nition 3.2 A Steiner tree ost-sharing method � is universally �-strit if for all SteinerTree instanes I = (G;D) and for all demand pairs (si; t) 2 D,`(si; D n fsig) � � � �(I; (si; t));where D denotes the set of demands of I and `(si; D n fsig) the length of a shortest pathbetween si and some other demand.Example 3.3 Reall that the Prim ost shares de�ned in Example 2.8 assign to eah de-mand pair (si; t) a ost share equal to half of the length of a shortest path between si andsome other demand. This is at least half of the length `(si; D n fsig) of the shortest suhpath. Prim ost shares are therefore universally 2-strit.The next lemma justi�es the use of the word \universal" in De�nition 3.2: universallystrit ost shares are strit with respet to every Steiner Tree algorithm.Lemma 3.4 If � is a universally �-strit Steiner tree ost-sharing method and A is a SteinerTree algorithm, then � is �-strit for A.Proof: To satisfy De�nition 2.5, we must show that `G=F (si; t) � � � �(I; (si; t)) for everySteiner Tree instane I = (G;D) and every demand pair (si; t) 2 D, where F is the output14
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of A for the Steiner Tree instane (G;D n f(si; t)g). Letting D denote the set of demands ofI, this inequality holds as`G=F (si; t) � `(si; D n fsig) � � � �(I; (si; t));where the �rst inequality follows the fat that F must inlude a path between t and everyother demand in D n fsig, and the seond inequality follows from De�nition 3.2. �Theorem 2.10 and Lemma 3.4 immediately give the following result.Theorem 3.5 Suppose there is a universally �-strit Steiner tree ost sharing method. Ifan �-approximation algorithm for Steiner Tree is used in the subproblem step of Sample-Augment, then Sample-Augment is a randomized (� + �)-approximation algorithm forSSRoB.Theorem 3.5 deouples the tasks for �nding a good Steiner Tree approximation algo-rithm and �nding (universally) strit ost shares. Combining the universally 2-strit Primost shares and the 1.55-approximation algorithm for Steiner Tree due to Robins and Ze-likovsky [58℄ then yields a 3.55-approximation algorithm for SSRoB.Corollary 3.6 There is a randomized 3.55-approximation algorithm for the SSRoB problem.Remark 3.7 The same graphs that show that the MST heuristi is no better than a 2-approximation algorithm for Steiner Tree (see e.g. [62, Example 3.4℄) prove that for everyonstant � < 2, there is no universally �-strit Steiner tree ost sharing method. On theother hand, better upper bounds on the approximation ratio of Sample-Augment ouldfollow from striter ost shares that are not universally strit, or from improvements to theupper bound in Theorem 3.5.Remark 3.8 In the proof of Lemma 3.4, we ruially used the fat that every feasiblesolution to a Steiner Tree instane is a single onneted omponent. Sine di�erent feasiblesolutions to a Steiner Forest instane an have di�erent sets of onneted omponents, theredo not seem to be useful analogues of De�nition 3.2 and Theorem 3.5 for the Steiner Forestand MRoB problems, respetively.3.2 Multiommodity Rent-or-Buy: MotivationIn the next subsetion, we design a onstant-fator approximation algorithm for the MRoBproblem. The algorithm, and espeially the analysis, will be more involved than in Sub-setion 3.1. This subsetion motivates our algorithm. We �rst review the primal-dual2-approximation algorithm for Steiner Forest due to Agrawal, Klein, and Ravi [1℄ and Goe-mans and Williamson [29℄, whih is losely related to our Steiner Forest subroutine. We thenpresent an instane of MRoB that suggests that the algorithm of [1, 29℄ should be made\more aggressive" to failitate the de�nition of strit ost shares (and the appliation ofTheorem 2.10). 15
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3.2.1 The AKR-GW AlgorithmWe now review the 2-approximation algorithm for Steiner Forest due to Agrawal, Klein, andRavi [1℄ and Goemans and Williamson [29℄, whih we refer to as the AKR-GW algorithm.Our exposition will be similar to that in [29℄. Until very reently [49℄, this was the onlyknown onstant-fator approximation algorithm for the problem.Fix an instane I = (G;D) of Steiner Forest. For a subset S � V of verties and ademand pair (si; ti), we say that S separates (si; ti) if S ontains exatly one of si or ti. Theset S is a Steiner ut of I if it separates some demand pair. Let C denote set of Steiner utsof I. Finally, let Æ(S) denote the set of edges with exatly one endpoint in the vertex setS � V . The AKR-GW algorithm iteratively onstruts a feasible integral solution to thelinear relaxation min Xe2E exesubjet to:(PLP ) Xe2Æ(S) xe � 1 for every Steiner ut S 2 Cxe � 0 for every edge e 2 E;and a feasible solution to the orresponding dual linear programmax XS2C ySsubjet to:(DLP ) XS2C : e2Æ(S) yS � e for every edge e 2 EyS � 0 for every Steiner ut S 2 C:The 0-1 integer solutions to (PLP ) are preisely the inidene vetors of the feasiblesolutions of I. By weak linear programming duality (see e.g. [18℄), the objetive funtionvalue of every feasible (frational) solution to the dual program (DLP ) is a lower bound onthe objetive funtion value of every feasible (frational) solution to (PLP ), and in partiularon the value of a minimum-ost Steiner forest for (G;D).The AKR-GW algorithm is shown in Figure 2. It maintains a set of edges, initiallyempty; a feasible dual solution, initially the all-zero solution; and a partition of the verties,initially with all verties in their own lass of the partition. Edges in the urrent primalsolution are alled tight. We will all lasses of the vertex partition lusters. The algorithmwill maintain the invariant that lusters orrespond to the onneted omponents of the setof tight edges. A luster is ative if it is a Steiner ut and inative otherwise.In every iteration of the �rst part of the AKR-GW algorithm, the dual variables of theurrently ative lusters are inreased by the largest ommon amount that does not violateany of the dual paking onstraints of the form PS2C : e2Æ(S) yS � e. (If these dual variablesan be inreased by an arbitrarily large amount, then the instane (G;D) is infeasible.)After this dual inrease, there is at least one edge whose paking onstraint is satis�ed with16
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Input: a Steiner Forest instane (G;D).1. Initialize all of the dual variables yS to 0 and the lusters to the verties fvgv2V .2. While there is at least one ative luster (a luster separating some demand pair):(a) Uniformly raise the dual variables of the ative lusters as muh as possible with-out violating dual feasibility.(b) Let e be an edge satisfying PS2C : e2Æ(S) yS = e, where the endpoints of e are indistint lusters, at least one of whih is ative. Delare e to be tight.() Merge the two lusters ontaining the endpoints of e into a single luster.3. Output the tight edges essential for feasibility.Figure 2: Outline of the AKR-GW algorithm.equality and with endpoints in di�erent lusters, at least one of whih is ative. One suhedge e is then deemed tight, and the two lusters ontaining the endpoints of e are mergedinto a single luster. Note that one of these two old lusters ould have been inative, andthe new luster ould be ative or inative. Eventually, all lusters are inative and thisportion of the algorithm halts.For onveniene, we assoiate a notion of time with this phase of the AKR-GW algo-rithm. At the beginning of the algorithm the time � is set to 0. Every time dual variablesare inreased, the urrent time inreases by the same amount as the dual variables.Ties between di�erent potentially tight edges at a given time an be broken arbitrarily.However, we assume throughout this paper, and partiularly in Lemma 3.25 below, thatthe AKR-GW algorithm is implemented with a onsistent tie-breaking rule (suh as alexiographi rule).The �nal and most subtle step of the AKR-GW algorithm identi�es a subset of the tightedges that is a feasible solution and also has low ost. Several slightly di�erent implemen-tations of this \delete step" have been proposed [1, 29, 30℄. With an eye toward our SteinerForest algorithm in the next subsetion, we adopt that of Goemans and Williamson [29℄.Preisely, let F denote the set of tight edges. An edge of F is inessential if F n feg is afeasible solution for (G;D), and essential otherwise. The �nal output of the AKR-GWalgorithm is the set of essential tight edges. The algorithm an learly be implemented inpolynomial time. For fast implementations, see [19, 26, 48℄.It is not immediately obvious that the algorithm AKR-GW outputs a feasible solution,let alone one with low ost. Nonetheless, Agrawal, Klein, and Ravi [1℄ and Goemans andWilliamson [29℄ proved the following guarantee.Theorem 3.9 ([1, 29℄) For every Steiner Forest instane (G;D), the AKR-GW algorithmoutputs a feasible dual solution fySgS2C and a feasible Steiner forest F � E satisfyingXe2F e � 2XS2C yS: (9)17
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Figure 3: Example 3.10. A Steiner Forest instane showing that no straightforward ost-sharing method for the AKR-GW algorithm is O(1)-strit.Sine the sum on the right-hand side of (9) is a lower bound on the value of a minimum-ost Steiner forest of (G;D), Theorem 3.9 implies that the AKR-GW algorithm is a 2-approximation algorithm for the Steiner Forest problem.We will prove a generalization of Theorem 3.9 in Subsetion 3.3 and Appendix A.3.2.2 A Triky Instane for the AKR-GW AlgorithmIn light of Theorem 2.10, a natural idea is to use the AKR-GW algorithm as the SteinerForest subroutine in the Sample-Augment algorithm and attempt to de�ne O(1)-stritost shares for it. Suh ost shares would give a onstant-fator approximation algorithmfor MRoB. Moreover, the dual variables onstruted by the AKR-GW algorithm suggestthe following family of natural Steiner forest ost-sharing methods: when a dual variable ySis inreased by an additive fator of �, inrease the ost shares of the demand pairs thatare separated by S by at most �, with this inrease split between these ost shares in anarbitrary way. The sum of ost shares de�ned in this way is at most the value of the dualfeasible solution onstruted by the AKR-GW algorithm, whih in turn is at most the valueof a minimum-ost Steiner forest. Suh ost shares thus satisfy De�nition 2.4. But are theystrit?Our next example shows that no ost-sharing sheme of this type is O(1)-strit for theAKR-GW algorithm. Preisely, all a Steiner forest ost-sharing method � straightforwardfor AKR-GW if, for every Steiner Forest instane I = (G;D) and every demand pair(si; ti) 2 D, the ost share �(I; (si; ti)) is at most the sum of the dual variables yS of theAKR-GW algorithm that orrespond to lusters S that separate (si; ti). Note that all ofthe ost-sharing methods in the aforementioned family are straightforward for AKR-GWin this sense.Example 3.10 Consider the Steiner Forest instane I shown in Figure 3, where n is arbitrar-ily large and � < 1=n. We will show that every ost-sharing method � that is straightforwardfor AKR-GW is 
(n)-strit for AKR-GW.Consider the exeution of the AKR-GW algorithm on the instane I just after thetime 12 . There are n + 1 lusters: s1 and t1 are eah in an (ative) singleton luster, and siand ti share an (inative) luster for i = 2; 3; : : : ; n. By the time � � = (1 + �n)=2, all of theverties lie in the same (inative) luster. The maximum ost share that an be alloated to18
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the demand pair (s1; t1) by the straightforward ost-sharing method � is 2� � = O(1).Now let bI denote the instane (G;Dnf(s1; t1)g) and onsider the exeution of the AKR-GW algorithm on bI. All lusters are inative by the time 12 , and the �nal output of thealgorithm is the set F of unit ost edges. The s1-t1 distane `G=F (s1; t1) is thus n(1 + �) =
(n). The ost-sharing method � is therefore only 
(n)-strit.Example 3.10 suggests the following more deliate strategies for using Theorem 2.10 to obtaina onstant-fator approximation algorithm for the MRoB problem.(1) Modify the AKR-GW algorithm, presumably by foring it to build a limited numberof additional edges, so that there is a straightforward ost-sharing method that isO(1)-strit.(2) Design a non-straightforward O(1)-strit ost-sharing method for the AKR-GW al-gorithm.In the next subsetion, we suessfully pursue the �rst approah and obtain a (4 + 2p2)-approximation algorithm for MRoB. Very reently, Fleisher et al. [25℄ followed the seondapproah and designed a non-straightforward ost-sharing method that is 3-strit for theAKR-GW algorithm, whih by Theorem 2.10 gives a 5-approximation algorithm for MRoB.They also show that for every � < 8=3, there is no �-strit ost-sharing method for theAKR-GW algorithm.3.3 Multiommodity Rent-or-Buy: Algorithm and AnalysisWe now give a onstant-fator approximation algorithm for the MRoB problem by designinga onstant-fator approximation algorithm for Steiner Forest that admits an O(1)-strit ost-sharing method. We �rst show how to make the AKR-GW algorithm \more aggressive"in a ontrolled way, and then design strit ost shares for this modi�ed algorithm. Thealgorithm and the ost-sharing method are both reasonably simple and are losely based onthe AKR-GW algorithm; only the analysis of our algorithm is involved.3.3.1 The -AKR-GW AlgorithmTo modify the AKR-GW algorithm to build additional edges, we make two hanges. First,we prolong the period of time during whih tight edges are identi�ed. Seond, we modify thedelete step of the AKR-GW algorithm so that it does not ompletely reverse the progressmade in the earlier phase of the algorithm.The �rst modi�ation is fairly easy to implement by altering the rule used to lassifylusters as ative or inative. Reall that we assoiate a notion of time with the AKR-GW algorithm, whih traks the amounts by whih the algorithm inreases dual variables.For a demand pair (si; ti) of a Steiner Forest instane, we let Ti denote its merging time inthe AKR-GW algorithm|the earliest time at whih si and ti are ontained in a ommonluster. The main idea for aquiring extra tight edges is to fore si and ti to remain ativefor Ti time units for some  � 1. 19
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Input: a Steiner Forest instane (G;D).1. Run the AKR-GW algorithm and obtain the indued vetor T of merging times.2. Initialize all of the dual variables yS to 0; the lusters to the verties fvgv2V ; and thepartition P to the demands fdgd2D.3. While there is at least one ative luster (a luster that ontains a demand si or ti forwhih  � Ti is at least the urrent time):(a) Uniformly raise the dual variables of the ative lusters as muh as possible with-out violating dual feasibility.(b) Let e be an edge satisfying PS2C : e2Æ(S) yS = e, where the endpoints of e are indistint lusters, at least one of whih is ative. Delare e to be tight.() Merge the two lusters ontaining the endpoints of e into a single luster.(d) Merge the lasses of the partition P that ontain the ative demands in these twolusters into a single lass of P.4. Output the tight edges essential for P-onnetivity.Figure 4: Outline of the -AKR-GW algorithm.Formally, let (G;D) be an instane of Steiner Forest, T the orresponding vetor of merg-ing times in the AKR-GW algorithm, and  � 1 a parameter. Let D denote the set ofdemands (soures and sinks) of (G;D). The �rst phase of our algorithm, whih we all the-AKR-GW algorithm, is idential to that in AKR-GW exept for the de�nition of ativeand inative lusters. A demand si or ti of D is de�ned to be ative if the urrent time � isless than or equal to Ti and inative otherwise. A luster is de�ned to be ative if it ontainsat least one ative terminal and inative otherwise. Note that a luster may be ative in the-AKR-GW algorithm even though it separates no demand pair. Tight edges are identi�edand lusters are merged as in the AKR-GW algorithm; this phase of the algorithm haltswhen no ative lusters remain.The -AKR-GW algorithm might raise dual variables yS for sets S � V that are notSteiner uts and therefore do not partiipate in the dual linear program (DLP ). Nevertheless,the algorithm is well de�ned. Our analysis below will bound the ontribution of thesearti�ial dual variables.To implement its delete step, the -AKR-GW algorithm maintains a partition P ofthe demands D. Eah lass of the partition P should be interpreted as a olletion ofdemands that we want to be mutually onneted in the output of the algorithm. Initially,eah demand lies in a separate lass of this partition. When two lusters merge, the partitionlasses ontaining urrently ative demands of the lusters are merged into a single lass ofthe partition P.Lastly, onsider the �nal partition P, after all of the lusters have beome inative. Aset of edges is P-onneted if it ontains a path between every pair of demands that lie in a20
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ommon lass of P. Let F denote the �nal set of tight edges. A tight edge e is inessential ifF n feg is P-onneted and essential otherwise. The output of the algorithm is the essentialtight edges. The -AKR-GW algorithm is summarized in Figure 4.Example 3.11 Suppose we run the -AKR-GW algorithm on the Steiner Forest instanebI of Example 3.10, say with  = 2. All of the demands bD = fs2; : : : ; sn; t2; : : : ; tng remainative until the time 1. As a result, the algorithm onstruts a spanning tree of tight edgesthat inludes all of the unit-ost edges. In the �nal demand partition P, all of the demandsbD are in a single lass. The only tight edges not essential for P-onnetivity are (s1; s2)and (sn; t1). The �nal output F of the algorithm is a spanning tree of the demands bD thatinludes all of the unit-ost edges, whih is roughly twie the ost of an optimal solutionof bI. The shortest-path distane `G=F (s1; t1) in the ontrated graph G=F is only 2 + 2�.We next establish that the algorithm outputs a set of edges that is a P-onneted, feasibleSteiner forest. For Lemmas 3.12{3.18 below, �x an arbitrary instane I = (G;D) of SteinerForest and a parameter  � 1. We begin with the trikiest lemma, whih demonstrates alose onnetion between the lusters formed in theAKR-GW and -AKR-GW algorithms.This lemma will also play an important role in our analysis of the performane guarantee ofthe -AKR-GW algorithm. Heneforth, we use the notation A(I) to denote the exeutionof the algorithm A on the input I.Lemma 3.12 At eah time � , every luster of AKR-GW(I) at time � is a subset of aluster of -AKR-GW(I) at time � .Proof: Call a time � interesting if � = 0 or if two lusters are merged in one of the twoalgorithms at time � . There are learly only a �nite number of interesting moments in time.Call the time interval between onseutive interesting moments an epoh. Note that duringan epoh, the lusters of the two algorithms do not hange. We will prove the followingstrengthening of the lemma for every interesting moments in time � :(a) every luster of the algorithm AKR-GW at time � is a subset of a luster of thealgorithm -AKR-GW at time � ;(b) if fy�SgS2C and fz�SgS�V denote the dual solutions of the AKR-GW and -AKR-GW algorithms at time � , respetively, and e is an edge spanning two lusters of the-AKR-GW algorithm at time � , thenXS2C : e2Æ(S) y�S � XS�V : e2Æ(S) z�S:We next prove (a) and (b) by a mutual indution.The lemma learly holds when � = 0. For the indutive step, onsider an interestingtime � > 0. Let e be an edge spanning two lusters of the -AKR-GW algorithm at thetime � . We laim that an endpoint v of e was ontained in an ative luster S of the AKR-GW algorithm during the previous epoh only if it was ontained in an ative luster of the-AKR-GW algorithm during this epoh. This laim follows from part (a) of the indutive21
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hypothesis, whih implies that the luster eS of the -AKR-GW algorithm ontaining v inthis epoh ontains S, and the de�nition of the -AKR-GW algorithm, whih implies thata demand is ative in the AKR-GW algorithm only when it is also ative in the -AKR-GW algorithm. This laim and part (b) of the indutive hypothesis prove part (b) of theindutive step.For part (a) of the indutive step, we need only onsider the ase where at time �the AKR-GW algorithm merges two lusters, S1 and S2. By the indutive hypothesis,during the epoh preeding the time � , there were lusters eS1 and eS2 of the -AKR-GWalgorithm with Si � eSi for i = 1; 2. Sine S1 and S2 are merged at time � , there is an edgee 2 Æ(S1) \ Æ(S2) that is delared tight at time � . If e is ontained in either eS1 or eS2, theneS1 = eS2 sine distint lusters are disjoint. In this ase, S1 [ S2 � eS1 whih proves part (a).Now suppose that the edge e has exatly one endpoint in eah of eS1 and eS2. We have alreadyshown that (b) holds at time � , so the dual onstraint for e also holds with equality in the-AKR-GW algorithm. Thus eS1 and eS2 will be merged into a ommon luster (ontainingS1 [ S2) by the -AKR-GW algorithm at time � , ompleting the proof of the indutivehypothesis and the lemma. �Lemma 3.12 implies that at every time � , every luster of the -AKR-GW algorithm isa union of lusters of the AKR-GW algorithm. The argument in the proof of Lemma 3.12will reour several times in this setion.Next we note two simple lemmas about the demand partition P onstruted by the-AKR-GW algorithm. The �rst follows from a straightforward indution on the lustermergings of the algorithm.Lemma 3.13 Suppose at some time � in the exeution -AKR-GW(I), the demandsd1; d2 2 D of I are in a ommon lass of the urrent demand partition. Then d1 andd2 are also in a ommon luster at time � .The next lemma is a partial onverse of Lemma 3.13.Lemma 3.14 Suppose at some time � in the exeution -AKR-GW(I), the demandsd1; d2 2 D are ative and in a ommon luster. Then d1 and d2 are in a ommon lassof the demand partition at time � .Proof: The demands d1; d2 were ative when their lusters �rst merged, at whih point thealgorithm -AKR-GW merged the lasses of P that ontained them. �Lemma 3.14 indutively implies that when two lusters merge, at most two lasses of theurrent demand partition are merged. The next lemma notes that eah demand pair oupiesonly one lass of the �nal demand partition onstruted by the -AKR-GW algorithm.Lemma 3.15 Let P be the �nal demand partition onstruted by the -AKR-GW algorithmand (si; ti) a demand pair. The demands si and ti are in the same lass of P.Proof: Let Ti denote the merging time of si and ti in AKR-GW(I). By Lemma 3.12, thedemands si and ti will reside in a ommon luster of -AKR-GW(I) at or before time Ti.22
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Sine  � 1, this luster is ative at time Ti. Lemma 3.14 then implies that si and ti sharethe same lass of the demand partition P. �Lemma 3.15 implies that if P is the �nal demand partition of the algorithm -AKR-GW,then every P-onneted solution is also a feasible Steiner forest for I. The next lemma provesthat the set of tight edges onstruted by the -AKR-GW algorithm forms a P-onnetedsolution.Lemma 3.16 Let F be the set of tight edges and P the demand partition at the onlusionof the -AKR-GW algorithm. Then F is P-onneted.Proof: Suppose the demands d1; d2 2 D lie in the same lass of the �nal partition P. ByLemma 3.13, the demands d1 and d2 lie in the same luster. Sine the -AKR-GW algorithmmaintains the invariant that the lusters orrespond preisely to the onneted omponentsof the set of tight edges, there is a path of tight edges between d1 and d2. �Finally, we show that the algorithm's delete step does not destroy P-onnetivity. Ourargument is essentially due to Goemans and Williamson [29℄; we inlude the details for om-pleteness. As a preliminary step, we note that the -AKR-GW algorithm never onstrutsa yle of tight edges.Lemma 3.17 The �nal set F of tight edges onstruted by the algorithm -AKR-GW isayli.Proof: Suppose for ontradition that at some point in the exeution of the -AKR-GWalgorithm, an edge e = (v; w) is delared tight and reates a yle C of tight edges. Immedi-ately prior to e being delared tight, there was a v-w path C n feg of tight edges. But thenv and w would have been in the same luster at this point in the algorithm, ruling out theedge e as a andidate to beome tight. �Lemma 3.18 The -AKR-GW algorithm outputs a P-onneted solution, where P is the�nal demand partition onstruted by the algorithm.Proof: Let F be the �nal set of tight edges, whih is P-onneted by Lemma 3.16 and ayliby Lemma 3.17. Let d1; d2 2 D be an arbitrary pair of demands in a ommon lass of P.Sine F is ayli, there is a unique d1-d2 path P of tight edges. Eah edge of P is thereforeessential and will not be deleted by the -AKR-GW algorithm. Thus the set of essentialtight edges is P-onneted. �Lemmas 3.15 and 3.18 imply that the -AKR-GW algorithm always outputs a feasibleSteiner forest.3.3.2 Performane Guarantee of the -AKR-GW AlgorithmOur next goal is to show that for every  � 1, the -AKR-GW algorithm is a ( + 1)-approximation algorithm for the Steiner Forest problem. The main hallenge, as alluded toabove, is to aount for the ontribution of the arti�ial dual variables (yS for non-Steiner23
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uts S). Our �rst lemma bounds the ost of the Steiner forest output by the -AKR-GWin terms of both the legitimate and the arti�ial dual variables. The proof is essentially dueto Goemans and Williamson [29℄. For ompleteness, we inlude the proof in Appendix A.Lemma 3.19 For every Steiner Forest instane (G;D) and  � 1, the -AKR-GW algo-rithm outputs a dual solution fzSgS�V and a feasible Steiner forest F � E satisfyingXe2F e � 2XS�V zS: (10)The next lemma proves that the objetive funtion value of the (infeasible) dual solutionprodued by the -AKR-GW algorithm is only a ( +1)=2 fator larger than the (feasible)dual solution produed by the AKR-GW algorithm.Lemma 3.20 Let (G;D) be an instane of Steiner Forest, fySgS2C the feasible dual solutionprodued by the AKR-GW algorithm, and fzSgS�V the dual solution produed by the -AKR-GW algorithm. Then XS�V zS �  + 12 XS2C yS:Proof: We split the dual solution fzSgS�V into two parts and bound eah part separately. Tode�ne this split, let Ti denote the merging time of si and ti in the AKR-GW algorithm|theearliest time that they are in the same luster. If the dual variable zS is inreased by the-AKR-GW algorithm at a time � less than Ti for some demand si or ti ontained in S,then this inrease ontributes to the part z(1)S ; otherwise it ontributes to the part z(2)S . Putdi�erently, the z(1)S part of the dual variable is inreased until the time at whih all demandsin S beome inative in the AKR-GW algorithm; thereafter, the z(2)S part is inreased. Ata given time � , we aordingly lassify an ative luster S of the -AKR-GW algorithm aseither good or bad.The lemma will follow immediately from the following two inequalities:XS�V z(1)S �XS2C yS (11)and XS�V z(2)S �  � 12 XS2C yS: (12)We an prove (11) by de�ning, for every time � , an injetive mapping from the good ativelusters of the -AKR-GW algorithm at time � to the ative lusters of the AKR-GWalgorithm at time � . Fix a time � and a good ative luster eS of the -AKR-GW algorithmat time � . By the de�nition of good, the luster eS ontains a demand d 2 D that is in anative luster S of the AKR-GW algorithm at the time � ; map eS to S. Lemma 3.12 impliesthat this mapping sends eah ative luster of the -AKR-GW algorithm at time � to oneof its subsets. It is therefore injetive, whih ompletes the proof of (11).To prove (12), order the demands aording to inreasing merging times in theAKR-GWalgorithm. For onveniene, we insist that the two demands of a demand pair (si; ti)|whih24
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have equal merging time|are onseutive in the ordering, with the soure si �rst. We breakother ties arbitrarily. For a demand d 2 D, we will all a luster S of the AKR-GW or-AKR-GW algorithm a d-luster if d is the last demand in S. For a demand d 2 D, letYd denote the sum of the dual variables yS for d-lusters S of the AKR-GW algorithm.Similarly, let Zd denote the sum of the variables z(2)S for bad d-lusters S of the -AKR-GW algorithm. We all a demand pair (si; ti) good if Zsi = Zti = 0 and bad otherwise.Let B � D denote the bad demand pairs. Note that P(si;ti)2B(Zsi + Zti) = PS�V z(2)S andPd2D Yd =PS2C yS.We will establish the following four inequalities for every bad demand pair (si; ti) 2 B:Zsi = 0; (13)Zti � ( � 1)Ti; (14)Ysi � Ti; (15)Yti � Ti: (16)These imply thatXS�V zS = X(si;ti)2B(Zsi + Zti) � ( � 1) X(si;ti)2B Ti �  � 12 Xd2D Yd =  � 12 XS2C yS;whih will omplete the proof of the lemma.Let (si; ti) 2 B be a bad demand pair with Zd > 0 for d 2 fsi; tig. Let eS and S bethe lusters of the -AKR-GW and AKR-GW algorithms, respetively, that ontain thedemand d at the merging time Ti, after all luster mergings at this time have been performedby the algorithms. By the de�nition of Ti, the luster S ontains both si and ti, and si andti were in separate lusters of the AKR-GW algorithm at all previous moments in time.Also, by Lemma 3.12, eS ontains both si and ti at time Ti. Sine ti follows si in the orderingof demands, a luster of the -AKR-GW algorithm an only be an si-luster at time � if� < Ti, and suh lusters an only be good. This proves (13) and implies that d = ti.Next, sine Zti > 0, the luster eS must be a ti-luster at the time Ti. Sine S is a subsetof eS ontaining ti, it is also a ti-luster at the time Ti. Moreover, every luster of the AKR-GW algorithm that ontains a demand d 2 fsi; tig at a time � < Ti is a d-luster. Sineevery suh luster is ative in the AKR-GW algorithm, inequalities (15) and (16) follow.Finally, we upper bound Zti. By the de�nition of the -AKR-GW algorithm, a ti-lusteran only be ative at time � if � �  � Ti. On the other hand, suh a luster an only be badat time � if � � Ti. Sine only one luster of the -AKR-GW algorithm ontains ti at agiven moment in time, Zti � ( � 1)Ti. This proves (14) and the lemma. �Sine the feasible dual solution onstruted by the AKR-GW algorithm is a lower boundon the value of a minimum-ost Steiner forest, Lemmas 3.19 and 3.20 imply the followingapproximation ratio for the -AKR-GW algorithm.Theorem 3.21 For every  � 1, the -AKR-GW algorithm is a ( + 1)-approximationalgorithm for the Steiner Forest problem. 25
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Remark 3.22 A preliminary version of this work [34℄ ontained a weaker version of The-orem 3.21, whih laimed an approximation ratio of 2 for the -AKR-GW algorithm.Subsequent to [34℄, Behetti et al. [12℄ proposed a di�erent way to fore the AKR-GWalgorithm to build additional edges. They proved that, for a �xed value of a parameter � 2, their algorithm is a ( + 1)-approximation algorithm and admits [2=( � 1)℄-stritost shares. While the arguments in [12℄ do not seem to arry over to the -AKR-GW al-gorithm, this result nevertheless inspired us to revisit Theorem 3.21 and prove the improvedapproximation ratio of  + 1 with a new proof.3.3.3 Strit Cost Shares for the -AKR-GW AlgorithmFinally, we prove that the -AKR-GW algorithm is O(1)-strit provided  � 2. To de�neour ost shares, we introdue some new terminology. A Steiner ut of a Steiner Forestinstane separates a demand d if it does not ontain the other demand of d's demand pair. ASteiner ut is d-isolating if it separates d and no other demand. We then use the AKR-GWalgorithm to de�ne our ost shares as follows.De�nition 3.23 (Isolated Cost Shares) Let I = (G;D) be a Steiner Forest instane. LetfySgS2C be the dual solution onstruted by the AKR-GW algorithm for I. For a demandd 2 D, let Cd denote the d-isolating Steiner uts of I. The isolated ost share �(I; d) of ademand d 2 D isPS2Cd yS. The isolated ost share �(I; (si; ti)) of a demand pair (si; ti) 2 Dis �(I; si) + �(I; ti).In De�nition 3.23, every Steiner ut an ontribute to the ost share of at most one demand.The sum of the isolated ost shares for a Steiner Forest instane is therefore at most the valueof the dual solution onstruted by the AKR-GW algorithm, whih in turn is at most thevalue of a minimum-ost Steiner forest. Isolated ost shares are thus a ost-sharing methodin the sense of De�nition 2.4. Isolated ost shares are also straightforward in the sense ofExample 3.10. Our goal is the following theorem.Theorem 3.24 For every  � 2, the isolated ost shares are 2�1-strit for the -AKR-GWalgorithm.Our proof of Theorem 3.24 requires a number of steps. We remind the reader that Setions 4and 5 do not depend on any of the ideas in the following proof.First, �x  � 2, a Steiner Forest instane I = (G;D), and a demand pair (si; ti) 2 D. LetbI denote the Steiner Forest instane (G;D n f(si; ti)g). Let D and bD = D n fsi; tig denotethe sets of demands of I and bI, respetively. We need to show that`G=F (si; ti) � � � �(I; (si; ti)); (17)where � is the isolated ost share of (si; ti) in I, F is the Steiner forest returned by theexeution -AKR-GW(bI), and � = 2=( � 1).One main obstale to proving Theorem 3.24 lies in relating the behavior of the AKR-GWand -AKR-GW algorithms on the instanes I and bI, respetively. Despite the similarities26
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between the two instanes and the two algorithms, the exeutions AKR-GW(I) and -AKR-GW(bI) ould be dramatially di�erent. Indeed, the diÆulty of understanding thesensitivity of primal-dual algorithms to small perturbations of the input is well known, andhas been studied in detail in other ontexts by Garg [27℄ and Charikar and Guha [14℄. Wenext aim to partially avoid the detailed analyses of [14, 27℄ by transforming the instanes Iand bI. We emphasize that these transformations are only for our analysis, and in partiularfor the proof of Theorem 3.24.We �rst modify the exeution of the -AKR-GW algorithm on bI so that it behavesmore similarly to AKR-GW(I). Let T and bT denote the vetors of demand pair mergingtimes in the exeutions AKR-GW(I) and AKR-GW(bI), respetively. By de�nition, -AKR-GW(bI) uses the vetor  bT to lassify demands and lusters as ative or inative. Themodi�ed exeution of -AKR-GW(bI) instead uses the vetor T (restrited to the demandset bD of bI) for these lassi�ations. The next several lemmas show that the inequality (17)is only more diÆult to show for the modi�ed exeution of -AKR-GW(bI) than for theoriginal exeution. We begin with a monotoniity result, similar to Lemma 3.12, whih statesthat up to its merging time Ti, the addition of the demand pair (si; ti) an only inrease therate of growth of lusters in the AKR-GW algorithm.Lemma 3.25 For every time � � Ti, every luster of AKR-GW(bI) at time � is a subsetof a luster of AKR-GW(I) at time � .Proof: The proof is nearly idential to that of Lemma 3.12, with AKR-GW(I) playing therole of the -AKR-GW algorithm in the latter proof. The only statement in the proof ofLemma 3.12 whih requires a new argument here is the following: if the vertex v is in theative luster eS in AKR-GW(bI) at time � < Ti and the luster S � eS in AKR-GW(I) attime � , then S is also ative at this time. If S ontains si or ti, then S is ative at time � bythe de�nition of the merging time Ti. Otherwise, assuming that the AKR-GW algorithmis implemented with a onsistent tie-breaking rule (see Subsetion 3.2), the lusters thatdo not ontain si or ti are always idential in the two exeutions. This fat follows from astraightforward indution on the luster mergings of the two exeutions. Thus if S ontainsneither si nor ti, then S = eS and S is ative at time � , ompleting the proof. �Lemma 3.25 implies that demand pairs that merge before time Ti in AKR-GW(bI) anonly merge earlier in AKR-GW(I).Corollary 3.26 For every demand pair (sj; tj) 2 D n f(si; ti)g with bTj � Ti, Tj � bTj.Proof: By de�nition, sj and tj are in a ommon luster of AKR-GW(bI) at time bTj. IfbTj � Ti, then Lemma 3.25 implies that they are also in a ommon luster at time bTj inAKR-GW(I), and hene Tj � bTj. �Corollary 3.26 immediately implies that bTj � minfTi; Tjg for every demand pair (sj; tj) 2D n f(si; ti)g. It also leads to the next lemma, whih states that lusters in the originalexeution of -AKR-GW(bI) are only larger than in its modi�ed exeution.27



www.manaraa.com

Lemma 3.27 For every time � � Ti, every luster of the modi�ed exeution of -AKR-GW(bI) at time � is a subset of a luster of its original exeution at time � .Proof: As in the proof of Lemma 3.25, we only need to show that if a vertex v is in an ativeluster eS at time � � Ti in the modi�ed exeution and in a luster S � eS in the originalexeution at time � , then S is an ative luster. Sine eS is ative, it ontains a demandd 2 fsj; tjg with � � Tj. Sine � �  �minfTi; Tjg, Corollary 3.26 implies that d and heneS are also ative at time � in the original exeution of -AKR-GW(bI), whih ompletesthe proof. �A similar result holds for the demand partitions of the original and modi�ed exeutionsof -AKR-GW(bI).Lemma 3.28 For every time � � Ti, every lass of the demand partition of the modi�edexeution of -AKR-GW(bI) at time � is a subset of a lass of the demand partition of itsoriginal exeution at time � .Proof: We proeed by indution on the luster mergings of the modi�ed exeution of -AKR-GW(bI). The lemma learly holds before any luster mergings have ourred. For theindutive step, onsider a time � � Ti when the modi�ed exeution merges the lusters eS1and eS2. Sine no partition lasses are merged unless both lusters are ative, we an assumethat eS1 and eS2 ontain ative demands at time � . By Lemma 3.14, the ative demandsof eSj are ontained in a single demand partition lass eCj at time � for j = 1; 2. By theindutive hypothesis, there are partition lasses C1; C2 in the original exeution at time �with eCj � Cj for j = 1; 2. After eS1 and eS2 are merged, eC1 and eC2 are merged into a singlelass eC1 [ eC2. Lemma 3.27 implies that after all luster mergings of the original exeutionat time � have ourred, there is a luster S of the original exeution that ontains eS1 [ eS2.As in the proof of Lemma 3.27, sine � � Ti, Corollary 3.26 implies that every demandthat is ative at time � in the modi�ed exeution is also ative in the original exeution atthis time. The luster S thus ontains ative demands from both eC1 � C1 and eC2 � C2. ByLemma 3.14, these demands must be in the same partition lass after the luster mergingsof the original exeution of -AKR-GW(bI) at time � , and this partition lass must ontainC1 [ C2 � eC1 [ eC2. The indutive step and the lemma are proved. �Let P� denote the demand partition of the modi�ed exeution of -AKR-GW(bI) at thetime Ti. Call the demands of a single lass of the partition P� a P�-group. Reall that thedemand set bD of bI is D n fsi; tig. In partiular, neither si nor ti lies in any P�-group.Obtain the graph H from G by, for every P�-group, identifying the set of verties hostingdemands from this group into a single vertex. Note that while H typially has a smallervertex set than G, it has the same edge set and edge osts as G. The next lemma relatesshortest si-ti paths in H to those in G=F , where F is the Steiner forest returned by theoriginal exeution of -AKR-GW(bI).Lemma 3.29 Let F be the Steiner forest returned by the original exeution of -AKR-GW(bI). Then `G=F (si; ti) � `H(si; ti);28



www.manaraa.com

where `H(si; ti) denotes the value of a minimum-ost si-ti path in the graph H.Proof: Lemmas 3.16 and 3.28 imply that the output of the original exeution of -AKR-GW(bI) is a P�-onneted Steiner forest F , ontaining a path between every two demandsthat lie in a ommon P�-group. All demands of a P�-group therefore reside in a single nodeof the ontrated graph G=F . Every si-ti path in H thus orresponds to one of no greaterlength in G=F , whih proves the lemma. �Lemma 3.29 ompletes the �rst part of our proof of Theorem 3.24 and redues the theoremto showing that `H(si; ti) � � � �(I; (si; ti)); (18)where � = 2=( � 1).We will prove (18) by, oneptually, rerunning the AKR-GW and -AKR-GW algo-rithms on the instanes IH = (H;D) and bIH = (H;D n f(si; ti)g), respetively. While thesetwo new exeutions behave similarly to their analogues with the original graph G|as weshow below|the inequality (18) is easier to establish for the instanes IH and bIH than forI and bI.As before, for the analysis we need to modify the exeutionsAKR-GW(IH) and -AKR-GW(bIH) to use the merging times T of AKR-GW(I). Preisely, we make the followingde�nitions, whih are ruial for the following analysis.� The modi�ed exeution of AKR-GW(IH) deems a luster S ative at time � if andonly if S ontains a demand sj or tj of D with � � Tj (as opposed to if S separatessome demand pair of D).� The modi�ed exeution of -AKR-GW(bIH) deems a luster S ative at time � if andonly if S ontains a demand sj or tj of bD with � � Tj (as opposed to using themerging times of demand pairs in AKR-GW(bIH)).Heneforth, we abuse notation and use AKR-GW(IH) and -AKR-GW(bIH) to denotethese modi�ed exeutions.We �rst show that the isolated ost share �(IH ; (si; ti)) arued by (si; ti) in AKR-GW(IH) is at most that in AKR-GW(I). For this result, we need an auxiliary lemma. Init, we say that a luster ~S of H inludes a luster S of G if every vertex of S is mapped to avertex of ~S under the vertex identi�ation map used to obtain H from G. In partiular, if~S inludes S, then all demands ontained in S are also ontained in ~S.Lemma 3.30 For every time � , every luster of AKR-GW(I) at time � is inluded insome luster of AKR-GW(IH) at time � .The proof of Lemma 3.30 is almost idential to that of Lemma 3.12, and we omit furtherdetails.We now ompare the original isolated ost share �(I; (si; ti)) to its analogue in IH . Reallthat demands are deemed ative or inative in AKR-GW(IH) based on the merging timesT rather than on the separated demand pairs. We aordingly say that a luster S of AKR-GW(IH) isolates the demand d at time � if d is the sole ative demand in S at the time � .29
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The ost share �� of (si; ti) in IH is then de�ned as the total amount of time that si and tispend in isolating lusters in AKR-GW(IH).Lemma 3.31 Let �� denote the total amount of time that si and ti spend in isolating lustersin AKR-GW(IH). Then �� � �(I; (si; ti)):Proof: First, observe that by the de�nition of (the modi�ed exeution of) AKR-GW(IH)and the meeting time Ti in AKR-GW(I), a demand is ative at time � in one exeution ifand only if it is ative at time � in the other exeution. Next, suppose that d 2 fsi; tig isin an ative, isolating luster ~S in AKR-GW(IH) at time � . The luster S that ontains din AKR-GW(I) at time � must then also be ative. Moreover, Lemma 3.30 implies that Sontains only fewer demands than ~S at time � , and is thus also d-isolating. Sine eah of siand ti is only in an ative, isolating luster at time � in AKR-GW(IH) when it is in suh aluster at time � in AKR-GW(I), the isolating ost share of (si; ti) in the former exeutionis at most that in the latter. �Next, by Lemma 3.30, si and ti are �rst ontained in the same luster of AKR-GW(IH)at some time T �i � Ti. Sine lusters orrespond to onneted omponents of tight edges,at time T �i there is an si-ti path P of H that omprises only tight edges. Moreover, ativelusters of AKR-GW(IH) an only interset this path in a restrited way.Lemma 3.32 If the luster S is ative at time � in AKR-GW(IH), then the verties thatlie in both S and P appear onseutively on P .Proof: Suppose for ontradition that there are verties u; v; w on P , with v between u andw on P , suh that u; w 2 S and v =2 S. Sine lusters orrespond to onneted omponentsof tight edges, there is a u-w path Q1 of tight edges inident only to verties in S at time� in AKR-GW(IH). On the other hand, at time T �i there is a u-w path Q2 of tight edgesinident to the vertex v =2 S|the u-w subpath of P . By the time maxf�; T �i g, all of theedges in Q1 [Q2 are tight in AKR-GW(IH), at whih point there is a yle of tight edges.Sine this ontradits Lemma 3.17, the proof is omplete. �We will use the path P as a proxy for the shortest si-ti path in H. This ompletes theseond part of our proof of Theorem 3.24, and redues the theorem to showing that theisolated ost share �� of (si; ti) in AKR-GW(IH) reovers a signi�ant fration of the ostof the path P .For the next part of the proof, we will need to make a areful omparison of the dualvariables in AKR-GW(IH) and -AKR-GW(bIH). We all a moment � of time interestingif two lusters merge in AKR-GW(IH) at time � , if two lusters merge in -AKR-GW(bIH)at time � , or if � equals the merging time Ti of some demand pair (si; ti) in AKR-GW(I).An epoh of the former exeution is an interval of time between onseutive interestingmoments. Epohs of the latter exeution are the same intervals, saled by a fator of .There is thus a natural bijetion between the jth epohs of the two algorithms (for all j),whih will play a entral role in our argument. Additionally, the sets of ative and inativelusters of AKR-GW(IH) and -AKR-GW(bIH) remain unhanged during an epoh.30
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Our �rst lemma follows immediately from the de�nitions of (the modi�ed exeutions of)AKR-GW(IH) and -AKR-GW(bIH).Lemma 3.33 For demand d 2 D n fsi; tig and time � � 0, d is ative at time � in AKR-GW(IH) if and only if it is ative in -AKR-GW(bIH) at time � .Next, we show that the lusters of -AKR-GW(bIH) an only have a very restrited formbefore time T �i . We again require an auxiliary monotoniity lemma, whih relates lustersof -AKR-GW(bIH) bak to those of the modi�ed exeution of -AKR-GW(bI) that wasused to de�ne the graph H.Lemma 3.34 Suppose the edge e is ontained in a single luster of -AKR-GW(bIH) atthe time � . Then e is also ontained in a single luster of the modi�ed exeution of -AKR-GW(bI) at time � .Proof: The indutive proof is very similar to that of Lemma 3.12, and we omit most of thedetails. The only additional fat required for the present proof is the following: if the lemmaholds at time � and a vertex v of H is in an ative luster at time � in -AKR-GW(bIH),then the orresponding vertex ~v of G is in an ative luster of the modi�ed exeution of-AKR-GW(bI) at the time � . We now prove this fat. Sine v is in an ative luster S ofH at time � and lusters orrespond to onneted omponents of tight edges, there is pathof tight edges in S from v to a vertex w that ontains a demand d1 2 D n fsi; tig that isative at time � . Sine the lemma holds at time � , there is a luster ~S of G of the modi�edexeution of -AKR-GW(bI) at this time that ontains verties ~v and ~w that orrespondto v and w, respetively. By the de�nition of the graph H, there is at least one demandd2 2 D nfsi; tig at the vertex ~w that is in d1's P�-group. Let P denote the demand partitionof the modi�ed exeution of -AKR-GW(bI) at the time � . (Reall that P� is de�ned as thedemand partition of this exeution at the time Ti.) By Lemma 3.13, every demand in d2'sP-group A is ontained in ~S at time � . We an �nish the proof the lemma by showing thatsome demand in the set A is ative at time � in the modi�ed exeution of -AKR-GW(bI).Suppose for ontradition that all demands of A are inative at the time � . First, sined1 is ative in -AKR-GW(bIH) at time � , it is also ative in the modi�ed exeution of-AKR-GW(bI) at time � and thus d1 =2 A. Seond, by the de�nition of the -AKR-GWalgorithm, the P-group A will never merge with any other P-group after the time � . Thesetwo onsequenes ontradit the fat that d1 and d2 lie in the same P�-group of the modi�edexeution of -AKR-GW(bI) at the time Ti, ompleting the proof of the lemma. �Now we prove that the lusters of -AKR-GW(bIH) at a time � < T �i are simple.Lemma 3.35 Suppose S is an ative luster of -AKR-GW(bIH) at the time � < T �i .Then S ontains ative demands from only one P�-group.Proof: Suppose for ontradition that S ontains ative demands d1; d2 from di�erent P�-groups. Sine S orresponds to a onneted omponent of tight edges, S ontains an d1-d2path. By Lemma 3.34, this path (and hene d1 and d2) is ontained in a single luster of themodi�ed exeution of -AKR-GW(bI) at time � . By the de�nition of the modi�ed exeutions31
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of -AKR-GW(bI) and -AKR-GW(bIH), d1 and d2 are also ative in the modi�ed exeutionof -AKR-GW(bI) at this time. But then Lemma 3.14 implies that d1 and d2 are in thesame P�-group, a ontradition. �We next show that the ative lusters of AKR-GW(IH) are almost as simple before timeT �i . The following auxiliary lemma is where we use the standing assumption that  � 2. Itroughly states that the missing luster growth due to the absene of the demands si and tifrom the instane bIH an be made up for by growing the other demands for twie as long.Lemma 3.36 Suppose the demands d1 2 fsi; tig and d2 2 D n fsi; tig are ative and in thesame luster of AKR-GW(IH) at the time � < T �i . Then d1 and d2 are in the same lusterof -AKR-GW(bIH) at the time 2� .Proof: By symmetry, we an assume that d1 = si. Sine lusters orrespond to onnetedomponents of tight edges, there is an si-d2 path Q of tight edges at time � in AKR-GW(IH). Let fySgS�V denote the dual variables at this time; thus PS�V : e2Æ(S) yS = e forall e 2 Q. We laim that the edges of Q are nearly tight at time � in -AKR-GW(bIH) inthe following sense: Xe2Q XS�V : e2Æ(S) zS � (Q)� �; (19)where (Q) is the ostPe2Q e of Q and fzSgS�V are the dual variables in -AKR-GW(bIH)at time � .We �rst laim that if S is subset of the vertex set of H with ti 2 S and P \ Æ(S) 6= ;,then yS = 0. Indeed, if yS > 0 for suh a luster S, then S is ative at or before time � ,whih implies that by time � there is a set of tight edges from ti to Q. But then si and ti areonneted by a path of tight edges at time � in AKR-GW(IH) and are hene in the sameluster, whih ontradits the assumption that � < T �i .Next onsider the lusters that ontain neither si nor ti. As in the proof of Lemma 3.25, astraightforward indution shows that the sets of suh lusters are idential inAKR-GW(IH)and -AKR-GW(bIH) at all times. Thus zS = yS for all suh lusters S. Lastly, the sum ofthe dual variables yS of lusters S that ontain si is exatly � , and Lemma 3.32 implies thateah of suh luster with yS > 0 only ontributes to the paking onstraint of a single edgeof P . Inequality (19) follows.Finally, in -AKR-GW(bIH), the luster ontaining d2 will interset the path Q until siand d2 are in the same luster or until d2 beomes inative. Sine  � 2 and d2 is ativeat time � in AKR-GW(IH), d2 is ative at time 2� in -AKR-GW(bIH). Inequality (19)implies that d2's (ative) luster intersets P for at most � time units beyond the time � .Thus si and d2 must be in the same luster by time 2� in -AKR-GW(bIH). �Now we use Lemma 3.36 to limit the omplexity of ative lusters of AKR-GW(IH).Lemma 3.37 Suppose S is an ative luster of AKR-GW(IH) at the time � < T �i . ThenS ontains ative demands from only one P�-group, and does not ontain both si and ti.32
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Proof: The luster S does not ontain both si and ti by the de�nition of the mergingtime T �i . Suppose for ontradition that S ontains ative demands from distint P�-groups.If S ontains neither si nor ti then, as in the previous proof, S is also a luster of -AKR-GW(bIH) at the time � . This ontradits Lemma 3.35. Finally, suppose that S ontainsdemands d1; d2 from distint P�-groups in addition to either si or ti (si, say). Lemma 3.36implies that si, d1, and d2 are in the same luster of -AKR-GW(bIH) at the time 2� . Sine � 2, d1 and d2 are ative at this time in -AKR-GW(bIH), whih ontradits Lemma 3.35.� Lemma 3.37 allows us to lassify the ative lusters of AKR-GW(IH) at a time � < T �iinto three ategories. Reall that a luster S of AKR-GW(IH) isolates the demand d 2 Dat time � if d is the sole ative demand in S at the time � .� An ative luster S of AKR-GW(IH) at a time � < T �i is isolating if it is si- orti-isolating.� Suh a luster S is shared if it ontains an ative demand from D n fsi; tig and eithersi or ti.� Suh a luster S is independent if it ontains neither si nor ti.Suppose that S is in an ative luster of AKR-GW(IH) during an epoh preeding the timeT �i . If S is shared or independent, then S ontains an ative demand d 2 D n fsi; tig, andso by Lemma 3.33 there is an ative luster that ontains d in the orresponding epoh of-AKR-GW(bIH). If S is isolating, then there is no suh orresponding luster, as si and tiare not demands in bIH .We an now desribe our high-level plan for the �nal part of our proof of Theorem 3.24.Reall that P denotes the si-ti path of tight edges at time T �i in AKR-GW(IH). For aluster S, we will say that S rosses P k times if jP \ Æ(S)j = k. If the luster S rossesP a total of k times, then it ontributes a total of kyS to the left-hand sides of the pakingonstraints PS�V : e2Æ(S) yS � e for the edges e of P . Sine all edges of P are eventuallytight, the sum of all suh ontributions is preisely (P ).Our key laim will be that for a \typial" shared or independent luster that is ativein a given epoh of AKR-GW(IH), there is a orresponding luster in the same epohof -AKR-GW(bIH) that rosses P the same number of times. Sine epohs in the latterexeution are  times as long as those in the former one, the ontribution of these lustersto the paking onstraints of the edges of P is  times as large as in the former exeution.Sine the sum of all suh ontributions is at most (P ), only a limited number of the ativelusters that ross P in AKR-GW(IH) an be shared or independent|the rest must beisolated and thus ontribute to the isolated ost share of (si; ti).Now we supply the details. We �rst make preise the orrespondene between ativelusters in the two exeutions. We de�ne an injetive map �j for eah epoh j that preedesthe time T �i . Fix suh an epoh j. Let S be a shared or independent ative luster ofthis epoh in AKR-GW(IH). Sine S is not isolated, we an hoose (arbitrarily) an ativedemand d 2 D n fsi; tig that lies in S. Let eS be the luster ontaining d in the jth epoh of33
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-AKR-GW(bIH). Set �j(S) to eS. Note that �j is de�ned only on the ative shared andindependent lusters of the jth epoh. Next we prove several basi fats about these maps.Lemma 3.38 Fix an epoh j of AKR-GW(IH) that onludes at or before the time T �i .The map �j satis�es the following properties.(a) �j is injetive.(b) �j maps ative lusters to ative lusters.() If S is an ative independent luster in the jth epoh of AKR-GW(IH), then S ��j(S).(d) If S is an ative shared luster ontaining d 2 fsi; tig in the jth epoh of AKR-GW(IH), then �j(S) also ontains d.Proof: Part (a) follows from the fats that eah ative luster in the jth epoh of -AKR-GW(bIH) only ontains demands from one P�-group (Lemma 3.35), and that eah P�-groupof demands is ontained in a unique luster of the jth epoh of AKR-GW(IH). Part (b)follows immediately from Lemma 3.33. For part (), reall from the proof of Lemma 3.36that sine S is an independent luster at time � in AKR-GW(IH), it is also a luster at time� in -AKR-GW(bIH). Sine lusters only grow with time, in the jth epoh of -AKR-GW(bIH) there is a luster eS that ontains S, and �j will map S to eS. Finally, part (d)follows diretly from Lemma 3.36 and our standing assumption that  � 2. �Reall that the map �j is intended to set up a orrespondene between lusters in thejth epoh of AKR-GW(IH) that ross P and lusters in the jth epoh of -AKR-GW(bIH)that ross P . We next seek to prove that eah map �j approximately preserves the numberof rossings of P . We �rst note the following orollary of Lemma 3.32, whih limits thenumber of times that ative lusters of AKR-GW(IH) an ross the si-ti path P .Corollary 3.39 Let S be an ative luster of AKR-GW(IH).(a) If S is isolating or shared, then S rosses P at most one.(b) If S is independent, then S rosses P at most twie.The seond onsequene of Lemma 3.32 is that the image �j(S) of a shared or independentative luster S rosses P as many times as S does, unless either si or ti lies outside S andinside �j(S).Lemma 3.40 Let S be an ative shared or independent luster of AKR-GW(IH) in anepoh j that ends at or before time T �i .(a) If �j(S) rosses P fewer times than S, then �j(S) n S ontains either si or ti.(b) If �j(S) rosses P two fewer times than S, then �j(S) n S ontains both si and ti.34
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Proof: For part (b), Corollary 3.39 implies that we an assume that S is independent androsses P twie, while �j(S) does not ross P . By Lemma 3.38(), �j(S) � S. Sine �j(S)does not ross S, it must ontain P , and in partiular both si and ti. A similar argumentalso proves (a) for independent lusters.Finally, suppose S is shared. By symmetry, we an assume that S ontains si. ByCorollary 3.39(a), we an assume that S rosses P one while �j(S) does not ross P . ByLemma 3.38(d), �j(S) also ontains si. Thus if �j(S) does not ross P , it must ontain Pand in partiular ti. The proof is omplete. �Next we bound the number of times that si or ti an appear in a luster �j(S) but notin the preimage S.Lemma 3.41 Let S be an ative luster of AKR-GW(IH) in an epoh j that ends at orbefore time T �i . Suppose the demand d 2 fsi; tig lies in �j(S) but not S. Then d is isolatedin the jth epoh of AKR-GW(IH).Proof: We proeed by ontradition. Suppose that d is in a shared luster S 0 in the jth epohof AKR-GW(IH), with S 0 ontaining a demand d0 2 D n fsi; tig. Sine this epoh preedesT �i , d and hene S 0 are ative during this epoh. By Lemma 3.38(d), �j(S 0) ontains both dand d0. By Lemma 3.38(a), �j is injetive and hene �j(S) 6= �j(S 0). But both �j(S) and�j(S 0) ontain d, whih ontradits the fat that distint lusters in a ommon epoh aredisjoint. �With all of the preliminary results in plae, we are �nally prepared to �nish the proof ofTheorem 3.24. The proof will losely follow the outline desribed following Lemma 3.37.Proof of Theorem 3.24: We adopt all of the notation used above. Lemmas 3.29 and 3.31redue inequality (17), and hene the proof of the theorem, to showing that(P ) � 2 � 1 � ��; (20)where (P ) is the ost of the si-ti path P in H, and �� is the total amount of time that siand ti spend in isolating lusters in AKR-GW(IH).Let C denote the set of possible lusters of IH|the sets of verties that ontain at leastone demand of D. Similarly let bC denote the possible lusters of bIH . For a luster S, let y(j)Sand z(j)S denote the inrement in the dual variables yS and zS in the jth epohs of AKR-GW(IH) and -AKR-GW(bIH), respetively. Note that suh an inrement is positive in anepoh if and only if the orresponding luster is ative during the epoh.For a luster S, let �(S) denote the number of times that S rosses P . Let epoh p ofAKR-GW(bIH) end at time T �i . Sine P omprises only tight edges at time T �i in AKR-GW(IH), pXj=1 XS2C y(j)S � �(S) = (P ): (21)Also, pXj=1 XS2bC z(j)S � �(S) � (P ): (22)35
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Let CIj � C denote the lusters that are si- or ti-isolating during the jth epoh of AKR-GW(IH). For a non-isolating luster S =2 CIj that is ative in an epoh j � p of AKR-GW(IH), let �j(S) = maxf0; �(S)� �(�j(S))g denote the number of \missing rossings ofP" from �j(S), relative to S. Sine epohs in -AKR-GW(bIH) are  times as long as inAKR-GW(IH), inequality (22) and Lemma 3.38(a) and (b) imply thatpXj=1 XS =2CIj  � y(j)S � [�(S)� �j(S)℄ � (P ): (23)Next, we an use Lemma 3.41 to assoiate eah ative, non-isolating luster S =2 CIj of thejth epoh of AKR-GW(IH) with �j(S) isolating lusters from the same epoh. Moreover,the injetivity of �j (Lemma 3.38(a)) implies that no suh isolating luster is mapped tomore than one: for d 2 fsi; tig, an isolating d-luster in the jth epoh of AKR-GW(IH)an only be mapped to by a luster S for whih d 2 �j(S). We thus haveXS =2CIj y(j)S � �j(S) � XS2CIj y(j)Sfor eah epoh j � p. Summing over all suh epohs and using the de�nition of the isolatedost share ��, we have pXj=1 XS =2CIj y(j)S � �j(S) � ��: (24)Combining (23) and (24) then givespXj=1 XS =2CIj y(j)S � �(S) � (P ) + ��: (25)Subtrating inequality (25) from equation (21) givespXj=1 XS2CIj y(j)S � �(S) � (P )� (P ) � ��: (26)Sine �(S) � 1 for all isolating lusters S 2 CIj in all epohs j � p (Corollary 3.39(a)), theleft-hand side of (26) is a lower bound on ��. Using this fat and rearranging we obtain�� �  � 12 � (P );whih ompletes the proof. �Theorems 2.10, 3.21, and 3.24 imply that for every  � 2, the algorithm Sample-Augment, using the algorithm -AKR-GW as its Steiner Forest subroutine, is a onstant-fator approximation algorithm for MRoB. 36
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Theorem 3.42 Algorithm Sample-Augment, with the subproblem step implemented withthe -AKR-GW algorithm with  � 2, is a [ + 1 + 2=( � 1)℄-approximation algorithmfor the MRoB problem.Choosing  = 1 +p2 we obtain an approximation ratio of 4 + 2p2 � 6:83.Corollary 3.43 Algorithm Sample-Augment, with the subproblem step implemented withthe (1 + p2)-AKR-GW algorithm, is a (4 + 2p2)-approximation algorithm for the MRoBproblem.Prior to our work, the best approximation ratio known for the MRoB problem was more thanone thousand [50℄. In addition, the algorithm in [50℄ is fairly ompliated. We emphasizethat while our proof of Theorem 3.42 is involved, our MRoB algorithm is relatively simple,with omplexity omparable to that of the AKR-GW algorithm.Remark 3.44 In a preliminary version of this work [34℄, we presented a 12-approximationalgorithm for MRoB. The improvement in Theorem 3.42 above omes from two soures.First, the preliminary version [34℄ ontained a weaker version of Lemma 3.41, whih led toa looser analysis in the proof of Theorem 3.42. Seond, as disussed in Remark 3.22, thepreliminary version [34℄ also ontained a weaker version of Theorem 3.21. We disoveredthe �rst improvement soon after the publiation of [34℄; this optimization alone gives an8-approximation algorithm for MRoB. As noted in Remark 3.22, we disovered the seondre�nement of our analysis only after an analogous improvement was presented by Behettiet al. [12℄ for a di�erent algorithm. Our approximation ratio of 4 + 2p2 in Theorem 3.42mathes that of the algorithm in [12℄.3.4 Multiast Rent-or-BuyIn this subsetion we extend our algorithm and analysis for the MRoB problem to the moregeneral MuRoB problem, where there are arbitrary demand groups in plae of demand pairs.Formally, an instane of MuRoB is given by the usual graph G = (V;E) with edge osts , aparameter M , and a set D = fD1; : : : ; Dkg of demand groups. Eah demand group Di is anarbitrary set of two or more demands and has a orresponding weight wi. A feasible solutionto a MuRoB instane buys and rents apaity on edges as usual, and also spei�es a treeAi for eah demand group Di that spans all of the demands of Di. The apaity on eahedge e must be at least the weight Pi : e2Ai wi of the trees that inlude it. In other words,the apaity installed must be suÆient for simultaneous \multiast" ommuniation withineah demand group.3.4.1 Extending the Sample-Augment and -AKR-GW AlgorithmsMost of the algorithmi and analyti tehniques of Subsetion 3.3 arry over to the MuRoBproblem, but a few additional ideas are needed. The high-level approah of the Sample-Augment algorithm also applies to the MuRoB problem: sample eah demand group Diindependently with probability minfwi=M; 1g, buy in�nite apaity on edges to onnetdemand groups in the randomly sampled subproblem, and greedily rent apaity for the37
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remaining demand groups. There are learly no subtleties in implementing the samplingstep. The problem that arises in the subproblem step, whih we will all the GeneralizedSteiner Tree (GST) problem [1, 29℄, seems more general than the Steiner Forest problem,sine the onnetivity requirements now involve demand groups rather than demand pairs.An instane of GST an be onverted into an equivalent instane of Steiner Forest, however,for example by replaing eah demand group Di with a set of demand pairs, one for eahunordered pair of demands of Di. Thus every �-approximation algorithm for Steiner Forestan be onverted into an �-approximation algorithm for GST. Alternatively, the AKR-GWand -AKR-GW algorithms are easily modi�ed to diretly approximate the GST problem.First, modify the AKR-GW algorithm so that it deems a luster S ative whenever thereis a demand group Di for whih S ontains a non-empty and strit subset of the demandsof Di. The merging time Ti of a demand group Di is then the earliest time at whih alldemands of Di lie in a ommon luster. The -AKR-GW algorithm is then de�ned for theGST problem in the obvious way.In either ase, the following analogue of Theorem 3.21 holds for the (suitably modi�ed)-AKR-GW algorithm.Theorem 3.45 For every  � 1, the -AKR-GW algorithm is a ( + 1)-approximationalgorithm for the GST problem.3.4.2 Strit Cost Shares for the -AKR-GW Algorithm: The Multiast CaseWe next disuss strit ost-sharing methods for GST algorithms and for the -AKR-GWalgorithm in partiular. Extending the de�nition of a strit ost-sharing method is straight-forward. By a GST ost-sharing method we mean a funtion � that assigns a non-negativeost share �(I; Di) to eah demand group Di of an instane I of GST, suh that the sum ofthe ost shares is at most the ost of an optimal solution to I.De�nition 3.46 Let A be a deterministi algorithm for the GST problem. A GST ost-sharing method � is �-strit for A if for all instanes I = (G;D) of GST and for all demandgroups Di 2 D, `G=F (Di) � � � �(I; Di);where F is the solution returned for the instane (G;D n fDig) by the algorithm A, and`G=F (Di) denotes the value of a minimum-ost tree in G=F that spans all of the demandsof Di.An algorithm for the GST problem is then �-strit if it admits some �-strit ost-sharingmethod. One new ompliation is that the value `G=F (Di), whih represents the heapestway of renting apaity between the demands of Di given that in�nite apaity has alreadybeen bought on the edges of F , is NP-hard to ompute for general demands groups. Wedisuss this issue further at the end of the setion.We noted above that an �-approximation algorithm for Steiner Forest naturally induesan �-approximation algorithm for GST. Unfortunately, a stritness guarantee (in the senseof De�nition 2.5) for a Steiner Forest approximation algorithm does not neessarily arryover to a stritness guarantee (in the sense of De�nition 3.46) for the orresponding GST38
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approximation algorithm. In partiular, we must reprove a stritness guarantee for the-AKR-GW algorithm for the GST problem.We next outline how to modify the proof of Theorem 3.24 to show the following result.Theorem 3.47 For every  > 2, the -AKR-GW algorithm for the GST problem is 4�2-strit.As in the proof of Theorem 3.24, we will show that the isolated ost-sharing method(De�nition 3.23) is 4=( � 2)-strit for the -AKR-GW algorithm. In the ontext of theGST problem, a luster S is alled Di-separating for a demand group Di if S ontains anon-empty strit subset of the demands of Di, and is Di-isolating if it separates Di andno other demand group. The isolated ost share �(I; Di) of a demand group Di of a GSTinstane I is then de�ned as the sum of the dual variables onstruted by the AKR-GWalgorithm for I that orrespond to Di-isolating lusters.Fix an instane I = (G;D) of GST and a demand pair Di 2 D. Let bI denote the GSTinstane (G;D n fDig). The �rst part of the proof of Theorem 3.47 is idential to that ofTheorem 3.24. In partiular, we de�ne Ti to be the merging time of the demand groupDi in AKR-GW(I), the modi�ed exeution of -AKR-GW(bI) as the exeution that usesthe merging times T of AKR-GW(I) (rather than of AKR-GW(bI)) to lassify lustersas ative or inative, P� to be the demand partition of this modi�ed exeution at the timeTi, and H as the graph obtained from G by identifying verties that host demands from aommon P�-group. Following the proofs of Lemmas 3.25{3.29 establishes the following.Lemma 3.48 Let F be the solution returned by (the original exeution of) -AKR-GW(bI).Then `G=F (Di) � `H(Di);where `G=F (Di) and `H(Di) denote the values of minimum-ost trees spanning all demandsof Di in G=F and H, respetively.The seond part of the proof of Theorem 3.47 is also similar to that of Theorem 3.24.De�ne the GST instanes IH = (H;D) and bIH = (H;DnfDig), and the (modi�ed) exeutionsAKR-GW(IH) and -AKR-GW(bIH), whih use the merging times T in AKR-GW(I) tolassify lusters as ative or inative.We next de�ne the isolated ost share of Di in (the modi�ed exeution of) AKR-GW(IH). In AKR-GW(IH), a demand of Di is ative at the time � if and only if � � Ti.We all a luster S of AKR-GW(IH) Di-isolating at the time � � Ti if S ontains at leastone (ative) demand of Di and no ative demand of another demand group. We de�ne theisolated ost share �� of Di in AKR-GW(IH) as the sum of the dual variable inreasesin AKR-GW(IH) that orrespond to Di-isolating lusters. More formally, all a time �interesting in AKR-GW(IH) if � = 0, if two lusters merge at time � , or if some lusterbeomes inative at time � . For future onveniene, we also all a time � interesting if twolusters merge in -AKR-GW(bIH) at the time � . As usual, an epoh is an interval betweenonseutive interesting moments of time and the set of ative lusters remains unhangedwithin an epoh. Let CIj denote the lusters of AKR-GW(IH) that are Di-isolating in anepoh j that ends at or before the time Ti. Let y(j)S denote the inrement in the dual variables39
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yS in the jth epoh of AKR-GW(IH). The isolated ost share �� of Di in AKR-GW(IH)is formally de�ned as �� = pXj=1 XS2CIj y(j)S ; (27)where p is the number of epohs that preede the time Ti. Following the proofs of Lem-mas 3.30 and 3.31 gives the next lemma.Lemma 3.49 The isolated ost share �� of Di in AKR-GW(IH) satis�es�� � �(I; Di):Lemmas 3.48 and 3.49 redue the proof of Theorem 3.47 to showing that`H(Di) � 4 � 2 � ��:The analogue of Lemma 3.30 implies that by some time T �i � Ti, all of the demands of Dilie in a ommon luster of AKR-GW(IH). Sine the set of tight edges in AKR-GW(IH)is ayli (see Lemma 3.17), there is a unique minimal tree Ai of tight edges that spans thedemands of Di at the time T �i in AKR-GW(IH); we use Ai as a proxy for `H(Di).We now arrive at the point at whih the proofs of Theorems 3.24 and 3.47 diverge insome small but important ways. First, the analogue of Lemma 3.32 is the following.Lemma 3.50 If the luster S is ative at time � in AKR-GW(IH), then the verties thatlie in both S and Ai form a subtree of Ai.While Lemmas 3.33{3.35 arry over without hange to the present setting, the proof ofLemma 3.36 only gives the following.Lemma 3.51 Suppose at the time � < T �i a luster of AKR-GW(IH) ontains exatly onedemand d1 from Di as well as an ative demand d2 not in Di. Then d1 and d2 are in thesame luster of -AKR-GW(bIH) at the time 2� .We will use the following orollary of Lemma 3.51.Corollary 3.52 Suppose the demands d1 2 Di and d2 =2 Di are ative and in the sameluster of AKR-GW(IH) at the time � < T �i . Then the luster of -AKR-GW(bIH) thatontains d2 at the time 2� also ontains at least one demand of Di.Proof: Lemma 3.51 implies that the luster of -AKR-GW(bIH) that ontains d2 at the time2� also ontains the �rst demand of Di to share a luster of AKR-GW(IH) with d2. �While Lemma 3.37 does not ompletely arry over to the present setting|in partiular, anative luster of AKR-GW(IH) might ontain ative demands from distint P�-groups|wean still lassify the ative lusters of AKR-GW(IH) as (Di-)isolating, shared, or inde-pendent. We an also de�ne the maps �j for eah epoh j preeding T �i for ative sharedand independent lusters as in Subsetion 3.3. Reall that for suh a luster S in a suh40
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an epoh j, we pik (arbitrarily) a demand d that lies in S but not Di and set �j to theluster that ontains d in the jth epoh of -AKR-GW(bIH). (Reall also that epohs of-AKR-GW(bIH) are those of AKR-GW(IH), saled by a  fator.) Corollary 3.52 andthe proof of Lemma 3.38 then yield the following.Lemma 3.53 Fix an epoh j of AKR-GW(IH) that onludes at or before the time T �i .The map �j satis�es the following properties.(a) �j is injetive.(b) �j maps ative lusters to ative lusters.() If S is an ative independent luster in the jth epoh of AKR-GW(IH), then S ��j(S).(d) If S is an ative shared luster in the jth epoh of AKR-GW(IH), then �j(S) ontainsat least one demand of Di.The main onsequene of our onessions in the above lemmas is that, in the language ofthe proof of Theorem 3.24, we an no longer preisely ontrol the number �j(S) of \missingrossings" of Ai by �j(S), relative to those by a luster S. In partiular, we annot establishanalogues of Corollary 3.39 and Lemma 3.40 in the GST setting, whih in turn will lead to adegradation in our stritness bound. Before ompleting the proof of Theorem 3.47 we statea �nal lemma, whih follows from the argument in the proof of Lemma 3.41.Lemma 3.54 Let S be an ative luster of AKR-GW(IH) in an epoh j that ends at orbefore time T �i . Suppose �j(S) ontains all of the demands of Di. Then every demand of Dithat lies in �j(S) but not S is in an isolating luster in the jth epoh of AKR-GW(IH).We now omplete the proof of Theorem 3.47. As foreshadowed above, it di�ers fromthe proof of Theorem 3.24 primarily in that we bound the impat of missing rossings in arelatively rude way.Proof of Theorem 3.47: Our goal is to show that(Ai) � 4 � 2 � ��; (28)where (Ai) is the ost of the tree Ai and �� is de�ned as in (27). For a luster S, let �(S)denote the number of edges in both Ai and Æ(S). Let C and bC denote the possible lustersS of IH and bIH , respetively, with �(S) > 0. For a luster S, let y(j)S and z(j)S denote theinrement in the dual variables yS and zS in the jth epohs of AKR-GW(IH) and -AKR-GW(bIH), respetively. Let epoh p end at time T �i . First, the following rude bound holds(f. (22)): pXj=1 XS2bC z(j)S � (Ai): (29)41
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As in (21), sine Ai omprises only tight edges at time T �i in AKR-GW(IH),pXj=1 XS2C y(j)S � �(S) = (Ai): (30)Next, we laim that for every epoh j � p, ignoring the number of rossings in (30)neglets at most half of the sum of the dual inrements:XS2C y(j)S � 12XS2C y(j)S � �(S):To prove this laim, �x an epoh j � p and onsider the set Cj � C of lusters that areative in this epoh. Note that y(j)S is the same|namely, the length of the jth epoh|forall lusters S 2 Cj. The laim is therefore equivalent to the assertion that the average valueof �(S) among lusters in Cj is at most 2. By Lemma 3.50, eah suh luster S intersets Aiin a subtree of Ai, with distint lusters orresponding to vertex-disjoint subtrees. Obtaina new tree X from Ai by ontrating eah of these disjoint subtrees. Call a vertex x of Xontrated if it orresponds to a luster S of Cj and original otherwise. If x is a ontratedvertex orresponding to the luster S, then the degree of x in X is preisely �(S). Sine X isa tree, the average degree of a vertex of X is at most 2. Sine Ai is a minimal tree that spansthe verties of Di, every leaf of Ai is a demand of Di. Sine every suh demand lies in anative luster of AKR-GW(IH) in the epoh j � p, every leaf of X is a ontrated vertex.Sine original verties of X all have degree at least 2, the average degree of a ontratedvertex of X is at most 2, whih ompletes the proof of the laim.Combining the laim with (30) yieldspXj=1 XS2C y(j)S � (Ai)2 ; (31)the symmetry between (29) and (31) now allows us to proeed similarly to the proof ofTheorem 3.24. Let CIj � C denote the Di-isolating lusters during the jth epoh of AKR-GW(IH). For a shared or independent luster S 2 Cj n CIj that is ative in an epoh j � pof AKR-GW(IH), let �j(S) equal 1 if �j(S) =2 bC (i.e., if �(�j(S)) = 0) and 0 otherwise.Cruially, parts () and (d) of Lemma 3.53 imply that �j(S) = 1 for suh a luster only if�j(S) ontains all of the demands of Di.Sine epohs in -AKR-GW(bIH) are  times as long as in AKR-GW(IH), inequal-ity (29) and Lemma 3.53(a) and (b) imply thatpXj=1 XS =2CIj  � y(j)S � [1� �j(S)℄ � (Ai): (32)Applying Lemma 3.54, the injetivity of �j (Lemma 3.53(a)), and the de�nition (27) of ��then gives pXj=1 XS=2CIj y(j)S � (Ai) + ��: (33)42
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Subtrating inequality (33) from inequality (31) givespXj=1 XS2CIj y(j)S � (Ai)2 � (Ai) � ��;realling the de�nition (27) of �� and rearranging establishes (28) and ompletes the proof.�3.4.3 A 12.66-Approximation Algorithm for MuRoBFinally, we ombine Theorems 3.45 and 3.47 to obtain an approximation algorithm for theMuRoB problem. Naively, there is a new soure of error in the Sample-Augment algorithmfor the MuRoB problem: greedily renting apaity in the augmentation step now orrespondsto solving the NP-hard Steiner Tree problem, and therefore requires an approximation al-gorithm. The obvious analogue of Theorem 2.10 for the MuRoB problem is: if a �-strit�-approximation algorithm for GST is used in the subproblem step of Sample-Augment,and a -approximation algorithm for Steiner Tree is used in the augmentation step, thenSample-Augment is a randomized (� + � � )-approximation algorithm for MuRoB.Traing through the proof of Theorem 3.47, however, we see that it an be used togive a polynomial-time implementation of the augmentation step of the Sample-Augmentalgorithm. Sine the stritness guarantee of Theorem 3.47 applies diretly to this partiularimplementation, there is no further loss in approximation ratio and the bound of �+� fromTheorem 2.10 applies. Preisely, by implementing the subproblem and augmentation stepsof the Sample-Augment algorithm with the -AKR-GW subroutine and the subroutineimpliit in the orresponding stritness proof (Theorem 3.47), respetively, the followingbound applies to the Sample-Augment algorithm for the MuRoB problem.Theorem 3.55 For every  > 2, there is a randomized [ + 1 + 4=( � 2)℄-approximationalgorithm for the MuRoB problem.Choosing  = 2 + 2p2, we obtain an approximation ratio of 7 + 4p2 � 12:66.4 Virtual Private Network DesignIn this setion and the next, we show that strit ost-sharing methods lead to improvedapproximation algorithms for two problems to whih our analysis framework does not diretlyapply. In this setion, we build on our algorithm and analysis for the SSRoB problem andgive a simple 5.55-approximation algorithm for the VPND problem. We study the SSBaBproblem in the next setion.4.1 The VPND AlgorithmReall from Subsetion 1.1 that in an instane of the VPND problem (Problem 1.2) we aregiven thresholds bin(j) and bout(j) on the amount of traÆ that enters and leaves eah demand43



www.manaraa.com

Input: an VPND instane (G;D; b).Assumptions: eah demand j 2 D is either a sender or a reeiver; there are more reeiversthan senders.1. (Sampling step) Pik a sender ŝ uniformly at random.2. (Subproblem step) Use the algorithm Sample-Augment to ompute a feasible solutionto the SSRoB instane (G;D; 1;M), where D is the set of all pairs of the form (r; ŝ) fora reeiver r, 1 the vetor of unit weights, andM is the number of senders. Let F denotethe edges bought by the algorithm. For every edge e 2 F , set ue =M ; for every otheredge e, set ue equal to the amount of apaity rented for e by the Sample-Augmentalgorithm.3. (Augmentation step) Greedily and independently reserve one unit of apaity from eahsender other than ŝ to F .Figure 5: The algorithm VPN-Sample-Augment.j 2 D � V of a network G = (V;E) with edge osts e. The objetive is to design a networkwill suÆient apaity for every traÆ pattern that respets these upper bounds. Formally,a traÆ pattern is spei�ed by a D �D matrix of nonnegative real numbers, with entry fijdenoting the amount of traÆ sent from demand i to demand j. A traÆ matrix is validif for every demand j, the amount of traÆ Pi fij inoming to j is at most bin(j) and theamount Pi fji of outgoing traÆ is at most bout(j). We assume that all of these thresholdsare rational numbers. By saling both these thresholds and the edge osts of G, we an thenassume, without loss of generality, that these thresholds are integral.A feasible solution to a VPND instane reserves apaity ue on eah edge e of the graphG, and selets paths Pij between eah ordered pair i; j 2 D of demands so that all validtraÆ matries an be routed using these paths without violating the reserved apaities.The ost of a solution is Pe eue and we seek a solution of minimum ost.To simplify our exposition, we assume for most of this setion that eah demand j isa either a sender (with bin(j) = 0 and bout(j) = 1) or a reeiver (with bin(j) = 1 andbout(j) = 0). In Remark 4.9, we indiate how to extend our algorithm and analysis to generalVPND instanes. We will also assume that the reeivers of the VPND instane outnumberthe senders; the algorithm and analysis in the other ase are symmetri.Figure 5 presents our algorithm for the VPND problem, whih we all VPN-Sample-Augment. Its high-level outline is the same as for the Sample-Augment algorithm. Givenan instane I of VPND, we �rst de�ne a random subproblem, whih in this ase is an instaneISSRoB of SSRoB. The only random parameter of ISSRoB is the sink vertex, whih is a senderŝ of I that is piked uniformly at random. The soure verties of ISSRoB are de�ned to bethe reeivers of I, and eah orresponding demand pair is given unit weight. Finally, theost M of buying apaity on an edge is de�ned to be the number of senders. We then solvethe random subproblem ISSRoB with the Sample-Augment algorithm of Subsetion 3.1.We interpret the resulting feasible solution of ISSRoB as follows. Let F be the set of edges44
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on whih the Sample-Augment subroutine bought apaity. In our VPND solution, wereserve M units of apaity on eah edge e 2 F . If the Sample-Augment algorithm rentsapaity for an edge e, then in our VPND solution we reserve the same amount of apaityon e. Finally, we greedily augment this partial solution to a feasible solution for the VPNDinstane I as follows: independently for eah sender s 6= ŝ, reserve one unit of apaity fors's exlusive use on a shortest path between s and F . For eah sender s and reeiver r, thes-r path Psr is de�ned as the onatenation of s's shortest path to F , a path through F toŝ, and the ŝ-r path de�ned by the Sample-Augment subroutine's solution to the instaneISSRoB.Next we prove some basi fats about the algorithm VPN-Sample-Augment. Forthe remainder of the analysis, �x an instane I = (G;D; b) of VPND that satis�es our twostanding assumptions. Let R and S denote the sets of reeivers and senders of I, respetively.Let F denote the set of edges bought by the Sample-Augment algorithm in the subproblemstep of VPN-Sample-Augment.Lemma 4.1 The algorithm VPN-Sample-Augment produes a feasible solution with prob-ability 1.Proof: Fix a valid demand matrix ffsrgs2S;r2R. We need to show that routing fsr unitsof ow on the path Psr de�ned above for every s 2 S and r 2 R does not violate anyapaity onstraint (with probability 1). We �rst laim that no edge e 2 F bought by theSample-Augment subroutine in the subproblem step is used beyond its apaity. Thisfollows beause M units of apaity are reserved on eah suh edge and, sine there are onlyM senders, Ps;r fsr �Ps bout(s) =M .On the other hand, the VPN-Sample-Augment algorithm expliitly reserves apaityon eah edge outside F for eah path that uses it. In more detail, for every sender s, allpaths of the form Psr begin with a shortest path from s to F , and the augmentation stepof the VPN-Sample-Augment algorithm reserves one unit of apaity on this subpath forexlusive use by s. Sine Pr fsr � bout(s) = 1, there is suÆient apaity for the traÆ onthese subpaths. Similarly, for eah reeiver r, all paths of the form Psr onlude with theŝ-r path Pr de�ned by the Sample-Augment algorithm's solution to the instane ISSRoB.Moreover,Ps fsr � 1. By the de�nition of the augmentation step of the Sample-Augmentalgorithm, there is one unit of apaity on the edges of Pr n F reserved for exlusive use bythe sender r. There is thus suÆient apaity on every edge for the traÆ of every path Psr,and the proof is omplete. �Also, the union of the routing paths produed by theVPN-Sample-Augment algorithmform a tree with probability 1.Lemma 4.2 If a onsistent tie-breaking rule is used to ompute shortest paths, then withprobability 1 the algorithm VPN-Sample-Augment produes a solution in whih the edgeswith non-zero apaity form a tree.Proof: Sine the set F is the output of a Steiner Tree instane algorithm, it is (or an beassumed to be) a tree. By the de�nition of the augmentation steps of the Sample-Augmentand VPN-Sample-Augment algorithms, all other edges with non-zero apaity lie on a45
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shortest path between a demand j and the set F|equivalently, are ontained in the shortest-path tree in the ontrated graph G=F rooted at the vertex orresponding to F . This impliesthat if a onsistent tie-breaking rule is used to ompute shortest paths, the set of all edgeswith non-zero apaity forms a tree. �4.2 AnalysisWe now bound the expeted ost of the solution produed by the VPN-Sample-Augmentalgorithm for the VPND instane I. We will do this by bounding three parts of this ostseparately: the expeted ost orresponding to the set F of edges bought by the Sample-Augment subroutine in the subproblem step; the expeted ost orresponding to the rentededges in the subproblem step; and the expeted ost of the augmentation step. The �rsttwo steps hinge on the following lemma, whih bounds the expeted ost of an optimalsolution to the (random) instane of Steiner Tree that arises in the subproblem step of theSample-Augment subroutine (f., Lemma 2.2).Lemma 4.3 Let OPTV PN denote the ost of an optimal solution for the VPND instane I.Let OPTŝ;R̂ denote the ost of an optimal solution for the Steiner Tree instane in the sub-problem step of the Sample-Augment subroutine, given the random hoies of the senderŝ 2 S and reeivers R̂ � R in the sampling steps of the VPN-Sample-Augment andSample-Augment algorithms, respetively. ThenE [OPTŝ;R̂℄ � OPTV PNM ; (34)where the expetation is over the random hoies of ŝ and R̂.Proof: We begin with the following equivalent desription of the random hoies made inthe sampling steps of the VPN-Sample-Augment and Sample-Augment algorithms.Suppose eah reeiver piks a sender independently and uniformly at random. Let Ds � Rdenote the random set of reeivers that pik the sender s. Then, independently hoose asender ŝ uniformly at random and onsider the Steiner Tree instane Iŝ de�ned by Dŝ [fŝg.We laim that this random proess indues the same distribution over Steiner Tree instanesthat the algorithm VPN-Sample-Augment does. In both proesses, one sender ŝ, hosenuniformly at random from the set of all senders, is inluded in the Steiner Tree instane. In theVPN-Sample-Augment algorithm, eah reeiver has a 1=M probability of being inludedin the Steiner Tree instane by the de�nition of the sampling step of the Sample-Augmentsubroutine. In the new random proess, sine there are M senders, the probability that areeiver piks the sender ŝ and is inluded in the resulting Steiner Tree instane is also 1=M .Moreover, these events are independent of eah other and of the hoie of the sender ŝ,just as in the VPN-Sample-Augment algorithm. The two random proesses thereforeindue the same distribution over Steiner Tree instanes, and we an prove the lemma byestablishing (34) for the new random proess above.We now prove that the expeted ost of an optimal solution to the random Steiner Treeinstane Iŝ is at most OPTV PN=M . We will prove this inequality after onditioning on the46
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partition fDsgs2S of reeivers, with the expetation only over the hoie of ŝ; the unondi-tional inequality (34) then follows. Fix an optimal solution to the VPND instane I thatreserves the paths fP �srgs2S;r2R and apaities fu�ege2E. We next show how to pak feasiblesolutions for all M of the Steiner Tree instanes fIsgs2S into this optimal solution.For eah sender s 2 S, let G�s denote the subgraph of G with the edge set [r2DsP �sr. SineG�s spans Ds [ fsg, the ost (G�s) of the subgraph G�s is at least denote the value OPTs ofan optimal solution to Is. Moreover, if an edge e appears in k subgraphs of the form G�s,then it is a member of k sender-reeiver paths that share no endpoints. Sine simultaneousrouting of traÆ on these k paths must be supported, OPTV PN must install at least k unitsof apaity on the edge e. Therefore,OPTV PN �Xs2S (G�s) �Xs2S OPTs:Thus, if we pik a sender uniformly at random from theM senders, E s[OPTs℄ � OPTV PN=M ,whih ompletes the proof. �A proof idential to that of Lemma 2.3 bounds the expeted ost inurred by the VPN-Sample-Augment algorithm for bought edges in its subproblem step.Lemma 4.4 If an �-approximation algorithm for Steiner Tree is used in the subproblem stepof the Sample-Augment subroutine, then the expeted ost inurred by the VPN-Sample-Augment algorithm for bought edges in its subproblem step is at most � �OPTV PN .We next use the universally strit ost shares for Steiner Tree (Subsetion 3.1) to boundthe expeted ost inurred by the VPN-Sample-Augment algorithm in the subproblemstep for edges that were rented by its Sample-Augment subroutine.Lemma 4.5 The expeted ost inurred by the VPN-Sample-Augment algorithm forrented edges in its subproblem step is at most 2 �OPTV PN .Proof: Let C denote the ost paid by the VPN-Sample-Augment algorithm for rentededges in its subproblem step. Reall from De�nition 3.2 and Example 3.3 that the Prim ost-sharing method of Example 2.8 is universally 2-strit. In partiular, Lemma 3.4 implies thatthese ost shares are 2-strit no matter what Steiner Tree algorithm is used in the subproblemstep of the Sample-Augment algorithm.We next ondition on the hoie of ŝ in the sampling step of theVPN-Sample-Augmentalgorithm. For a subset R̂ � R of reeivers, let OPTŝ;R̂ denote the value of a minimum-ostSteiner tree spanning ŝ and all of the reeivers in R̂. The proof of Lemma 2.9, and theinequalities (4) and (8) in partiular, imply thatE R̂[Cjŝ℄ � 2M �E R̂ hOPTŝ;R̂i ;where the expetations are over the random hoie of the set R̂ of reeivers in the Sample-Augment subroutine's sampling step. Taking expetations over the hoie of ŝ, we obtainE ŝ;R̂[C℄ � 2M �E ŝ;R̂ hOPTŝ;R̂i � 2 �OPTV PN ;47
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where the seond inequality follows from Lemma 4.3. The proof is omplete. �Our �nal lemma bounds the expeted ost of the augmentation step of the VPN-Sample-Augment algorithm.Lemma 4.6 The expeted ost inurred in the augmentation step of the VPN-Sample-Augment algorithm is at most 2 �OPTV PN .Proof: Sine the set F of bought edges ontains the sender ŝ, we an prove the lemma byshowing that, if a sender ŝ is piked uniformly at random, thenE "Xs2S `(s; ŝ)# � 2 �OPTV PN ;where `(�; �) denotes shortest-path distane in G. To prove this inequality, we �x a set R̂ � RofM reeivers. Every perfet mathingM of S and R̂ provides a lower boundP(s;r)2M `(s; r)on OPTV PN , sine a feasible solution must support the simultaneous ommuniation of allof the mathed pairs of M. Averaging over all of the M ! possible perfet mathings of Sand R̂, we obtain 1M Xs2S;r2R̂ `(s; r) � OPTV PN ;as eah sender-reeiver pair (s; r) appears in (M � 1)! of the M ! perfet mathings. Thisinequality implies that E ŝ 24Xr2R̂ `(ŝ; r)35 � OPTV PN : (35)Also, by the Triangle inequality for shortest-path distanes,Xs2S `(s; ŝ) �Xr2R̂ `(ŝ; r) + X(s;r)2M `(s; r) �Xr2R̂ `(ŝ; r) +OPTV PN ; (36)where M is an arbitrary perfet mathing of S and R̂. Taking expetations (over the hoieof ŝ) in (36) and ombining with (35) proves the lemma. �Combining Lemmas 4.4{4.6 with the 1.55-approximation algorithm for the Steiner Treeproblem due to Robins and Zelikovsky [58℄ yields the main theorem of this setion.Theorem 4.7 There is a randomized 5.55-approximation algorithm for the VPND problem.Lemma 4.2 states that the VPN-Sample-Augment algorithm always outputs a treesolution. Our analysis of the algorithm, however, does not assume that the paths hosen bythe optimal solution form a tree. Indeed, there are instanes in whih no optimal solutionforms a tree [33℄. Theorem 4.7 implies that for every instane of VPND, there is a treesolution within a (small) onstant fator of the optimal (graph) solution. This resolves oneof the main open questions from [33℄. 48
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Corollary 4.8 Every instane of VPND admits a tree solution with ost no more than 5.55times that of an optimal (graph) solution. Moreover, this solution an be omputed in poly-nomial time.If the onstraint of polynomial-time omputation is dropped, then the onstant in Corol-lary 4.8 an be improved to 5 by using an (exponential-time) optimal Steiner Tree subroutinein the VPN-Sample-Augment algorithm.Remark 4.9 The VPN-Sample-Augment algorithm and its analysis extend to the aseof arbitrary (integral) thresholds bin and bout as follows. Given an instane of VPND, supposewe modify the instane by splitting eah demand j into bin(j) reeivers and bout(j) senders,all of whih are o-loated. This inreases the set of feasible solutions, sine it allows thetraÆ of an original demand pair to be routed on more than one path. The modi�ationan therefore only derease the ost of an optimal solution. On the other hand, if the VPN-Sample-Augment algorithm uses a onsistent tie-breaking rule for omputing shortestpaths as in Lemma 4.2, then it will output a solution for the modi�ed instane that is alsofeasible for the original instane. Running the VPN-Sample-Augment algorithm aftersplitting demands into senders and reeivers therefore produes a feasible solution to theoriginal instane that is at most 5:55 times as ostly as an optimal solution (for the originalor the modi�ed instane).Splitting demands into senders and reeivers is only a polynomial transformation if all ofthe demand thresholds are polynomially bounded. However, by adjusting the sampling prob-abilities in the sampling steps of the VPN-Sample-Augment algorithm and its Sample-Augment subroutine, we an easily modify the algorithm to mimi its behavior on themodi�ed instane in polynomial time.5 Single-Sink Buy-at-Bulk Network DesignThis setion gives a simple onstant-fator approximation algorithm for the widely studiedSSBaB problem. Our algorithm is losely related to that of Guha, Meyerson, and Muna-gala [32℄, but the analysis tools developed in this paper permit a tighter and equally simpleanalysis. Subsetion 5.1 introdues notation for our analysis and reviews some well-knowntransformations of SSBaB instanes. Subsetion 5.2 presents our algorithm and analysis.5.1 PreliminariesReall that an instane of the SSBaB problem (Problem 1.3) omprises an undireted graphGand edge osts ; a set D of demand pairs f(si; t)gki=1; a weight wi � 0 for eah demand pair(si; t), denoting the amount of ow that si wants to send to t; andK able types f1; 2; : : : ; Kg,where the jth able has apaity uj and ost �j per able per unit length. The goal is toompute a minimum-ost way of installing ables so that there is suÆient apaity for allsoures to route ow simultaneously.Fix an instane I of SSBaB. We will assume that eah parameter uj and �j is a powerof 2. Similarly to [32℄, this assumption an be enfored while losing a fator of 4 in the49
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approximation ratio, by rounding eah apaity uj down to the nearest power of 2 and eah�j up to the nearest power of 2. By saling and reordering able types, we an assume that1 = u1 < � � � < uK and 1 = �1 < � � � < �K; if ui � uj and �i � �j, then able type i isredundant and an be eliminated.De�ne Æj = �j=uj, whih intuitively is the \inremental ost" of using able type j. Forall j, Æj is a power of 2. We an assume that Æ1 > : : : > ÆK, sine if Æi � Æj for some i < j,then able type j is redundant and an be eliminated.Finally, we de�ne gj = �j+1�j uj. Sine Æj > Æj+1, gj < uj+1 and hene1 = u1 < g1 < u2 < g2 < : : : < uK < gK =1: (37)Next, we would like to assume that all weights wi are integral. This assumption is notwithout loss of generality, as we have already saled the able apaities. Instead, we enforethis assumption with the following \redistribution lemma." Roughly speaking, this lemmashows how to take a grouping parameter U , along with a tree with weights on its verties,and randomly move weights throughout the tree so that the total weight at every node ofthe tree beomes either 0 or U . (For ensuring integral demands, we will take U to be 1).Moreover, this random proess has two important properties: the probability that a vertexin the tree reeives weight U is proportional to its initial weight, and no edge of the treearries too muh ow during the realloation.Lemma 5.1 (Redistribution Lemma) Let T be a tree and U > 0 a parameter. Supposeeah vertex j 2 T has a nonnegative weight wj < U and that the sum Pj wj of the weightsis a multiple of U . Then there is an eÆiently omputable (random) ow f in T with thefollowing properties.(a) With probability 1, f sends at most U units of ow aross eah edge of T .(b) After rerouting weights aording to the ow f , for every vertex j 2 T , the new weightof j is U with probability wj=U and 0 with probability 1� wj=U .A deterministi version of this lemma appears in [40, Lemma 1℄. We inlude the simple prooffor ompleteness.Proof: Replae eah edge of T by two oppositely direted ars. We �rst show that the lemmaholds in this bidireted tree eT . We start by rooting eT at an arbitrary vertex r and takingan Euler tour of eT starting at r. Order the verties j1; : : : ; jn of T aording to their �rstappearane in this Euler tour. For eah i 2 f1; 2; : : : ; ng, let Wi denote the sum of theweights of the �rst i verties in this ordering. De�ne W0 to be 0.Pik a value Y drawn uniformly at random from (0; U ℄. Call vertex ji unluky if forsome integer x, Wi�1 < xU + Y � Wi|if the running sum of weights just rossed the pointY modulo U|and luky otherwise. After this proedure onludes, we de�ne the ow ef toreroute weights as follows. If a vertex ji is luky, we add a ow path to ef that routes all of ji'sweight to the unluky vertex that is next aording to the ordering ji+1; : : : ; jn; j1; : : : ; ji�1.Otherwise, the vertex ji is only allowed to route Wi � (xU + Y ) units of its weight to thenext unluky vertex, where x is the integer de�ned above.50
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After this rerouting, a vertex has weight U if it is unluky and weight 0 if it is luky.The probability that the vertex j is unluky is preisely wj=U . Thus the ow ef satis�espart (a) of the lemma. The ow need not satisfy part (b), however: while ef routes at mostU units of ow on eah ar of eT , this orresponds to routing at most 2U units of ow on eahedge of the original undireted tree T . But sine ef routes at most U units of ow in eahdiretion aross eah edge of T , we an perform rudimentary ow-aneling independentlyon eah edge of T . This yields a ow f in T that satis�es part (b) of the lemma and, sineit redistributes weights identially to ef , also satis�es part (a). �We will use Lemma 5.1 as a preproessing step to ollet integral demands at somesubset of the soures of the instane I. First, we an assume that the sum of the demandpair weights in I is greater than 1; otherwise even the heapest able type e�etively hasin�nite apaity, and I is equivalent to a Steiner Tree instane. We also assume that thesum W of the demand pair weights in I is a power of 2 and is at least uK; this assumptionan be removed by adding a dummy demand pair (t; t) with an appropriate weight, andby modifying the following algorithm and analysis to ensure that this dummy weight neverleaves the sink t.As a preproessing step of the algorithm in the next subsetion, we use an �-approximationalgorithm for the Steiner Tree problem to ompute a tree T0 that spans all of the soures,and build one able of type 1 on eah edge of T0. We then apply Lemma 5.1 to the tree T0,with U = 1 and the weight of the soure si de�ned as the frational part wi � bwi of itsweight in I. After this proedure onludes, there is an integral amount of weight at everysoure of I.We now bound the ost of T0. Fix an optimal solution to I and let OPT denote itsost. Let C�(j) denote the ost of the ables of type j in this solution. Note that OPT =PKj=1C�(j). This solution must install nonzero apaity on a subgraph G� of G that spansall of the soures of I. Thus one andidate for a Steiner Tree solution T0 is to build onetype 1 able on eah edge of G�. Sine �1 = 1, the ost of this andidate solution is at mostKXj=1 C�(j)�j : (38)Sine we use an �-approximation algorithm to ompute the Steiner tree solution T0, the ostof T0 is at most � times the quantity in (38).5.2 The Algorithm SSBaB-Sample-AugmentWe now present our onstant-fator approximation algorithm for the SSBaB problem. Thealgorithm is similar to that of Guha, Meyerson, and Munagala [32℄, where the network isdesigned inrementally in stages. At the beginning of eah stage j there will be a set ofdemands, eah of whih represents a group of uj units of traÆ that must be routed to thesink. During the jth stage, we use the value uj+1 as an \aggregation threshold", and reroutegroups of uj+1=uj demands (eah of weight uj) into a single demand of weight uj+1. We buyables on the paths required for this agglomeration. At the end of all of the stages, every51
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demand reahes the sink. The �nal solution is the union of all of the ables bought in allof the stages. Sine this apaity is suÆient to move all of the presribed traÆ from thesoures to the sink (via the onatenation of the rerouting paths used in eah stage of thealgorithm), this solution is feasible.Let W denote the sum of the demand pair weights; reall from Subsetion 5.1 that wean assume that W is a power of 2. Our preproessing step from Subsetion 5.1 ensuresthat at the beginning of the �rst stage there is an integral weight at every soure vertex.If the soure si has weight wi at the beginning of the �rst stage, we interpret this as wio-loated demands, eah of weight 1. Let D1 denote the set of these unit-weight demands.While naively repliating demands ould result in a pseudopolynomial-time algorithm, non-uniform sampling an be added to the SSBaB-Sample-Augment algorithm to simulatethe e�et of this repliation in polynomial time (see also Remark 4.9).More generally, at the beginning of the jth stage, there is a set Dj of W=uj demands,loated at the soure verties of I, with weight uj eah. We now desribe eah stage j ofthe algorithm in more detail; see also Figure 6. In the sampling step, we hoose a randomsubset bDj � Dj of demands, with eah demand of Dj piked independently with probabilitypj = uj=gj = �j=�j+1. Note that the sampling probability pj is the ratio between theosts of the relatively low-apaity type j ables and relatively high-apaity type (j + 1)ables, analogous to the sampling step in the algorithm Sample-Augment for rent-or-buyproblems. In the subproblem step, we ompute a Steiner tree Tj spanning the set Fj, whihis the union of the sink t and the soure verties that ontain a demand of bDj. We build oneable of type (j + 1) on eah edge of Tj. In the augmentation step, we route the demandsoutside bDj to verties of Fj along shortest paths, while building ables of type j on theseshortest paths. In the gathering step, for eah o-loated group of uj+1=uj demands, we sendall of these demands bak to the originating loation (at the beginning of this stage) of one ofthem, hosen uniformly at random. This group of uj+1=uj demands is then treated as a singledemand of Dj+1 with weight uj+1 in the next stage. Finally, the rounding step is like thepreproessing step of Subsetion 5.1 and uses Lemma 5.1 to gather the remaining demandsinto groups of uj+1=uj demands. Eah suh group is then rerouted as in the gathering step,and is a single demand of Dj+1 of weight uj+1 in the next stage. In the Kth stage, gK =1and pK = 0. Thus, the sampling step of the �nal stage is vauous and all demands are sentto the sink t in the augmentation step.Eah demand d of Dj+1 an be naturally assoiated with a demand of Dj|the demandthat partiipated in the omplete group of uj+1=uj demands of Dj that orresponds to d, andthat was randomly hosen in the gathering or rounding step. Put di�erently, we an viewthe jth stage of the algorithm as, for eah omplete group of uj+1=uj demands identi�ed inthe gathering and rounding steps, multiplying the weight of a random suh demand by auj+1=uj fator and disarding the rest of them. We an thus sensibly write Dj+1 � Dj forevery j 2 f1; 2; : : : ; K � 1g. Finally, reall that D1 is the result of the preproessing stepof Subsetion 5.1 and is not the original set of demands of I. De�ne D0 as the initial setof demands, with eah demand pair (si; t) with weight wi of I giving rise to dwie demandsof D0 (bwi unit-weight demands and one demand with weight wi � bwi). Lemma 5.1(b)implies that the probability that a demand of D0 is also in D1 is exatly its weight.We now analyze the algorithm on the �xed SSBaB instane I with a sequene of lemmas.52
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1. (Sampling step) Construt a random subset bDj of the demands in Dj by hoosing eahsuh demand independently with probability pj = uj=gj = �j=�j+1.2. (Subproblem step) Let Fj denote the union of the sink and the soures that ontain ademand from bDj. Construt an �-approximate Steiner tree Tj that spans Fj. Install aable of type (j + 1) on eah edge of Tj.3. (Augmentation step) For eah demand in Dj, route its uj weight to the losest vertexin Fj. Install one able of type j on eah edge of this shortest path.4. (Gathering step) For eah vertex v 2 Fj, split the demands at v into omplete groupsof uj+1=uj demands plus one residual group of rv < uj+1=uj demands. Route eahomplete group bak to the initial loation (at the beginning of this stage) of one ofthe uj+1=uj ontributing demands, hosen uniformly at random. Install ables of typej + 1 to provide suÆient apaity.5. (Rounding step) Use Lemma 5.1 with the tree Tj, the parameter U = uj+1, and theweights of the residual groups, to aggregate the weight of all of the residual groups intoomplete groups of uj+1=uj demands, eah with total weight exatly uj+1. Reroute aomplete group at the vertex v 2 Fj bak to the initial loation of one of the rv demandsthat were routed to v in the augmentation step, hosen uniformly at random. Again,build new ables of type j + 1 to provide suÆient apaity.Figure 6: The jth stage of the algorithm SSBaB-Sample-Augment.Lemma 5.2 For every unit-weight demand d 2 D1 and every stage j 2 f1; 2; : : : ; Kg,Pr[d 2 Dj℄ = 1uj :Proof: The proof is by indution. The lemma is learly true when j = 1. For j > 1, we havePr[d 2 Dj℄ = Pr[d 2 Dj j d 2 Dj�1℄ �Pr[d 2 Dj�1℄:Sine Pr[d 2 Dj�1℄ = 1=uj�1 by the indutive hypothesis, we only need to show thatPr[d 2 Dj j d 2 Dj�1℄ = uj�1=uj. If d is gathered into a omplete group of uj=uj�1 demandsin the gathering step of stage (j�1) of the algorithm, then this equality holds beause everysuh demand is equally likely be hosen for membership in Dj. Suppose d is gathered intoa residual group of rv < uj=uj�1 demands at the vertex v 2 Fj�1 in the gathering step ofstage (j � 1) of the algorithm. Then d is inluded in Dj if and only if the RedistributionLemma gathers a omplete group of demands at the vertex v in the rounding step and thend is hosen for membership in Dj from the rv demands in the residual group at v. ByLemma 5.1(b), the probability of both events ourring isrvuj�1uj � 1rv = uj�1uj ;53
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whih ompletes the proof of the lemma. �Lemma 5.2 implies that for every stage j 2 f1; 2; : : : ; Kg, a demand d 2 D1 lies in the setbDj with probability pj � 1=uj = 1=gj. The probability that a demand d 2 D0 with weightw � 1 lies in the set bDj is thus w=gj.The next lemma bounds the expeted ost of an optimal solution to the Steiner Treeinstane arising in the subproblem step of eah stage of the SSBaB-Sample-Augmentalgorithm (f., Lemmas 2.2 and 4.3).Lemma 5.3 For a stage j 2 f1; 2; : : : ; K � 1g, let T �j be a minimum-ost Steiner treespanning Fj with ost (T �j ). ThenE [(T �j )℄ � KXi=j+1 C�(i)�i + 1gj jXi=1 C�(i)Æi ; (39)where C�(i) denotes the ost of the ables of type i in a �xed optimal solution to I, and theexpetation is over the hoie of bDj.Proof: As in the proof of Lemma 2.2, we will exhibit a (random) subgraph Gj of G thatspans Fj and has low expeted ost. Fix an optimal solution for I and a feasible way ofrouting all of the traÆ with respet to this solution. We �rst add to Gj all of the edges inthe optimal solution that possess a able of type j + 1 or higher. The ost of these edges is(deterministially) at most the �rst sum on the right-hand side of (39).We omplete Gj by onsidering eah demand d of bDj in turn. In the �xed optimalsolution, the traÆ of the orresponding demand d 2 D0 may be routed on multiple paths.(We unfortunately annot assume without loss of generality that an optimal solution is atree.) We randomly add to Gj one of these paths, with a path hosen with probability equalto the fration of d's traÆ that it arries.We now bound the expeted ost of adding these edges to Gj. Consider an edge e of Gwith no able of type j + 1 or higher in the optimal solution. First suppose that only oneable is installed on e, say of type i � j. Then e is inluded in the random subgraph Gj ifand only if the following events our: for some demand d 2 D0 and some path P that routessome of d's traÆ aross the edge e, the demand d lies in bDj, and the path P is seletedamong all paths that route d's traÆ. A demand d 2 D0 with weight w � 1 lies in bDj withprobability w=gj, and a path P is hosen with probability x=w, where x is the amount ofd's traÆ that is routed on P in the optimal solution. The Union Bound then implies thate lies in Gj with probability at most fe=gj, where fe is the total amount of ow on e in theoptimal solution.Sine fe � ui, edge e ontributes at most eui=gj to the expeted ost of Gj. On the otherhand, the able of type i on edge e ontributes �ie to C�(i). Thus the expeted ost in Gjfor edge e is at most 1=(gj Æi) times what the optimal solution pays for the able. For edgeson whih the optimal solution installs multiple ables, this same analysis an be performedon a able-by-able basis. Summing over all edges with no able of type j+1 or higher in theoptimal solution gives the seond sum on the right-hand side of (39) and proves the lemma.� 54
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We now relate the expeted ost inurred by the SSBaB-Sample-Augment algorithmto the expeted ost of an optimal Steiner tree spanning the verties in Fj.Lemma 5.4 Let j 2 f1; 2 : : : ; K � 1g be a stage and T �j a minimum-ost Steiner tree span-ning Fj with ost (T �j ). The expeted ost inurred in stage j of the algorithm SSBaB-Sample-Augment is at most (3 + �) �j+1E [(T �j )℄;where � is the approximation ratio of the Steiner Tree algorithm used in the subproblem step.Proof: Sine we install one able of type (j+1) on eah edge of the tree Tj that we omputein the subproblem step, the expeted ost inurred in this step is at most � �j+1E [(T �j )℄.As in Lemma 4.5, the universally 2-strit Prim ost shares of Example 2.8 imply that theexpeted ost of the augmentation step is at most 2 �j+1E [(T �j )℄. In more detail, we abusenotation and write �( bDj; di) for the Prim ost share of a demand pair (di; t) in the SteinerTree instane (G;D), where D = f(di; t) : di 2 bDjg. As in the proof of Lemma 2.9, wede�ne two random variables Bi and Ri for eah demand di 2 Dj. The random variableBi is equal to �j+1 times the Prim ost share �( bDj; di) when di 2 bDj, and to 0 otherwise.By De�nition 2.4, Pdi2Dj Bi is at most �j+1 (T �j ) (with probability 1). The variable Ri isde�ned to be zero when di 2 bDj, and is equal to �j times the length `(di; Fj) of a shortestpath between di and a vertex of Fj. Sine the probability that di lies in bDj is pj = �j=�j+1,following the proof of Lemma 2.9 shows that the expeted ost E [PiRi℄ of the augmentationstep is at most 2 �E [PiBi℄, and hene is at most 2�j+1 �E [(T �j )℄.We omplete the proof by showing that the expeted ost of the gathering and roundingsteps is at most �j+1E [(T �j )℄. Intuitively, we will harge the expeted ost of these stepsto that of the earlier augmentation step. Lemma 5.1 ensures that the rerouting of residualdemands in the rounding step an be aomplished using the ables of type j +1 purhasedin the subproblem step, and no new ables need to be built. For every edge e of G, one ableof type j was installed on e in the augmentation step of the jth stage for eah demand ofDj that used e to travel to a vertex of Fj. In the gathering and rounding steps, one able oftype (j + 1) is installed on e for eah suh demand that is hosen for membership in the setDj+1. Reall from the proof of Lemma 5.2 that for every demand d 2 Dj, the probabilitythat d is inluded in Dj+1 is preisely uj=uj+1. The expeted ost of rerouting demands inthe gathering and rounding steps is therefore at mostujuj+1 � �j+1�j = Æj+1Æjtimes the expeted ost of the augmentation step. Sine Æj+1 � Æj=2, the expeted ost ofthe gathering and routing steps is at most �j+1E [(T �j )℄. The lemma is proved. �Putting together our bounds on the expeted osts inurred in the preproessing stepsand in all of the stages of the SSBaB-Sample-Augment algorithm implies that it is aonstant-fator approximation algorithm for the SSBaB problem.55



www.manaraa.com

Theorem 5.5 Algorithm SSBaB-Sample-Augment is a 76.8-approximation algorithmfor the SSBaB problem.Proof: Fix an optimal solution with ost OPT = Pj C�(j). By Lemmas 5.3 and 5.4, theexpeted ost inurred by the algorithm in stages 1 through K � 1 is at mostK�1Xj=1 (3 + �)�j+1 �E [(T �j )℄ = (3 + �) KXi=1 C�(i) � " i�1Xj=1 �j+1�i + KXj=i �j+1Æigj # :Realling that �j+1=gj = Æj for eah j and adding in the ost (38) of the preproessing stepthat produes unit-weight demands for stage 1, we get that the total expeted ost inurredby the SSBaB-Sample-Augment algorithm after the initial rounding of able osts andapaities and before stage K is at most(3 + �) KXi=1 C�(i) � " i�1Xj=0 �j+1�i + KXj=i ÆjÆi # :Sine �j+1 � 2�j and Æj+1 � Æj=2 for every j 2 f1; 2; : : : ; K � 1g, this ost is at most4(3 + �) �OPT .In the �nal stage K of the algorithm, we route demands of size uK to the sink t alongshortest paths, building ables of type K to support this ow. This ostsXd2DK �K � `(d; t);where `(d; t) denotes the length of a shortest d-t path in G. Sine every demand d 2 D0 withweight wd � 1 orresponds to a demand of DK in the �nal stage with probability wd=uK(Lemma 5.2), the expeted ost of these ables of type K isXd2D0 wduK � �K � `(d; t) = ÆK Xd2D0wd`(d; t): (40)Sine ÆK is the smallest-possible inremental ost, the right-hand side of (40) is a lowerbound on the ost of the optimal solution to I. Thus the expeted ost in the Kth stage ofthe SSBaB-Sample-Augment algorithm is at most OPT .Finally, our initial rounding of the able osts and apaities inreases our approximationratio by a fator of 4. The �nal approximation ratio of the SSBaB-Sample-Augment algo-rithm is thus 4 [4(3 + �) + 1℄. Using the Steiner Tree algorithm of Robins and Zelikovsky [58℄,we an take � = 1:55 to ahieve an approximation ratio of 76.8. �6 Reent and Future WorkWe onlude by disussing reent researh motivated by the present paper and some dire-tions for future work. 56
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6.1 Reent WorkThe initial publiation of our MRoB algorithm [34℄ led to two subsequent papers on theproblem. As disussed in Remark 3.44, Behetti et al. [12℄ designed an alternative wayto fore the AKR-GW algorithm to build additional edges, and used it and Theorem 2.10to give a 6.83-approximation algorithm for MRoB. Very reently, Fleisher et al. [25℄ de-signed a (non-straightforward) 3-strit ost sharing method for the AKR-GW algorithm.In onjuntion with the Sample-Augment algorithm and Theorem 2.10, this gives a 5-approximation algorithm for MRoB, the best that is urrently known. No improvements toour SSRoB algorithm have yet appeared in the literature, although Gupta, Srinivasan, andTardos [39℄ reently derandomized the algorithm. Their approah is based on an alternativeanalysis of the algorithm and results in a deterministi 4.2-approximation algorithm, slightlybetter than the deterministi 4.55-approximation algorithm of Swamy and Kumar [60℄.For buy-at-bulk problems, no improvement of our SSBaB algorithm is known. On theother hand, Charikar and Karagiozova [15℄ reently gave the �rst non-trivial approximationalgorithm for the generalization of the multiommodity buy-at-bulk network design problemin whih the onave apaity ost funtion (or, equivalently, the available able types) anvary from edge to edge. The algorithm in [15℄, inspired by the Sample-Augment algorithmof this paper, randomly inates the weight of demand pairs and then runs a greedy heuristi.Two improvements of our VPND algorithm and analysis have reently been given. The�rst is a 4.74-approximation algorithm due to Eisenbrand and Grandoni [21℄, the seond a3.55-approximation algorithm of Eisenbrand et al. [22℄. Both papers are based on variationsof our algorithm and re�nements of our analysis.Most signi�antly, our de�nition of strit ost shares has been generalized and appliedto give the �rst onstant-fator approximation algorithms for several problems in stohastioptimization. As an example, onsider the following Stohasti Steiner Tree problem. Theinput is a graph G with edges osts , a sink vertex t, a set S = fs1; : : : ; skg of soures, adistribution � over sets of soures and an \ination fator" � > 1. The setup is as follows:an algorithm hooses a set F1 of edges in the �rst stage; a set bS � S of soures is hosenrandomly aording to �; and then the algorithm hooses a set F2 of edges so that F1 [ F2spans t and the soures of bS. The inentive for seleting edges in the �rst stage (withoutknowledge of the realization bS) is that eah edge e osts e in the �rst stage but �e inthe seond stage. The goal is to design an algorithm that hooses F1 and F2 in a way thatapproximately minimizes the expetation (over � and F2) of the total ost (F1) + �(F2).Gupta et al. [37℄ showed that random sampling, a Steiner Forest subroutine that admitsa strengthened form of strit ost shares, and greedy augmentation an be used to obtain a3.55-approximation algorithm for the Stohasti Steiner Tree problem. The only assumptionon the distribution � in [37℄ is that independent samples of � an be drawn in polynomialtime. Gupta et al. [37℄ also obtained similar results for stohasti versions of the VertexCover and Unapaitated Faility Loation problems. Earlier approximation algorithms forthese problems both had weaker performane guarantees and imposed additional restritionson the distribution � [42, 57℄. Strit ost shares and generalizations have sine been usedto design onstant-fator approximation algorithms for many other stohasti optimizationproblem [36, 38, 41℄. 57
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6.2 Future DiretionsWe onlude the paper with several suggestions for future researh.1. An obvious open question is to narrow the gap between the best approximation andinapproximability results for all of the problems studied in this paper. In partiular,are any of these problems provably harder than the Steiner Tree problem (assumingP 6= NP )?2. A more modest goal is to understand the limitations of our analysis framework inSetion 2. For example, is the guarantee in Theorem 2.10 the best possible? Is itpossible to re�ne the de�nition of strit ost shares and sharpen this guarantee?3. Can the ideas in our MRoB and SSBaB algorithms be ombined to yield an approxima-tion algorithm for the multiommodity buy-at-bulk problem? While reent results ofAndrews [2℄ rule out onstant-fator approximation algorithms under reasonable om-plexity assumptions, our tehniques might give an O(logn)-approximation algorithmfor the problem that does not resort to probabilisti tree embeddings [9, 23℄.4. Can the onstant-fator approximation algorithm for Stohasti Steiner Tree in [37℄ beextended to the stohasti version of the Steiner Forest problem? Suh an extensionwould follow from a strengthened version of our strit ost shares in Subsetion 3.3.5. Only our SSRoB algorithm has been derandomized [39℄. Can our other algorithms alsobe derandomized?Referenes[1℄ A. Agrawal, P. Klein, and R. Ravi. When trees ollide: an approximation algorithm forthe generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440{456, 1995. (Preliminary version in 23rd STOC, 1991).[2℄ M. Andrews. Hardness of buy-at-bulk network design. In Proeedings of the 45th AnnualIEEE Symposium on Foundations of Computer Siene (FOCS), pages 115{124, 2004.[3℄ M. Andrews and L. Zhang. Approximation algorithms for aess network design. Algo-rithmia, 34(2):197{215, 2002. (Preliminary version in 39th FOCS, 1998).[4℄ S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�ation and thehardness of approximation problems. Journal of the ACM, 45(3):501{555, 1998.[5℄ B. Awerbuh and Y. Azar. Buy-at-bulk network design. In Proeedings of the 38th An-nual IEEE Symposium on Foundations of Computer Siene (FOCS), pages 542{547,1997.[6℄ B. Awerbuh, Y. Azar, and Y. Bartal. On-line generalized Steiner problem. In Proeed-ings of the 7th Annual ACM-SIAM Symposium on Disrete Algorithms (SODA), pages68{74, 1996. 58
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A Proof of Lemma 3.19Proof of Lemma 3.19: Fix a Steiner Forest instane (G;D). A time � is interesting if � = 0, ifthe -AKR-GW algorithm merges two lusters at time � , or if a luster beomes deativatedat time � . Call the time in between onseutive interesting moments an epoh. Let Ci denotethe set of ative lusters during the ith epoh. In the ith epoh, the dual variables of all ofthe lusters in Ci are raised by some ommon amount, whih we denote by �i. From thede�nitions, we have zS = Xi :S2Ci�i (41)for every possible luster S � V andXS�V zS = pXi=1 �ijCij; (42)where p is the number of epohs.Let F be the Steiner forest output by the algorithm. The key laim is the following: inevery epoh i, XS2Ci jF \ Æ(S)j � 2jCij: (43)In other words, at every moment in time, an average ative luster only intersets two edgesof the �nal output F .To prove (43), �x an epoh i and obtain the graphH from the graph (V; F ) by ontratingeah luster (ative or inative) of epoh i into a single vertex. Thus the verties of Horrespond to the lusters in the ith epoh, and the edges of H are the edges of F that spantwo of these lusters. We will all the verties of H ative or inative aording to the statusof the orresponding luster of G in the ith epoh. The inequality (43) is equivalent to theassertion that the average degree of the ative verties of H is at most 2.First, sine the edges of F are tight edges, and the -AKR-GW algorithm maintainsthe invariant that lusters orrespond to onneted omponents of the set of tight edges,Lemma 3.17 implies that the graph H is ayli. Seond, we laim that no inative vertexof H has degree 1. This laim follows from the delete step of the -AKR-GW algorithm.To see this, onsider a luster S that is inative during the ith epoh. By the de�nitionof the -AKR-GW algorithm, all demands in S must be inative at this and all futuremoments in time. Sine the algorithm only merges lasses of the demand partition thatontain urrently ative verties, in the �nal partition P, no partition lass will ontainboth a demand from S and a demand from outside S. If the vertex of H orresponding tothis luster has degree 1, then there is an edge e of F whose removal an only disrupt theonnetivity of demand pairs with one demand in S and the other outside S. Thus edge eis not essential for P-onnetivity, and should have been removed in the delete step of the-AKR-GW algorithm.These two laims easily imply (43). Obtain eH from H by disarding all the isolatedinative verties. Sine eH is ayli, the average degree of verties of eH is at most 2.64
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Moreover, inative verties of eH all have degree at least 2. The ative verties of eH (and H)thus have average degree at most 2.Having established (43), we an now bound the ost of F as follows:Xe2F e = Xe2F XS�V : e2Æ(S) zS (44)= XS�V zS � jF \ Æ(S)j= pXi=1 �i XS2Ci jF \ Æ(S)j (45)� pXi=1 �i � 2jCij (46)= 2XS�V zS; (47)where (44) follows from the fat that all edges of F are tight, equation (45) follows from (41),inequality (46) follows from (43), and equation (47) follows from (42). �
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